Meron Omri, Arieli Uri, Bahar Eyal, Deb Swarup, Ben Shalom Moshe, Suchowski Haim
School of Physics and Astronomy, Faculty of Exact Sciences, Tel Aviv University, Tel-Aviv, 6997801, Israel.
Center for Light-Matter Interaction, Tel Aviv University, Tel-Aviv, 6997801, Israel.
Light Sci Appl. 2025 Feb 11;14(1):80. doi: 10.1038/s41377-025-01748-7.
The ultrafast formation of strongly bound excitons in two-dimensional semiconductors provides a rich platform for studying fundamental physics as well as developing novel optoelectronic technologies. While extensive research has explored the excitonic coherence, many-body interactions, and nonlinear optical properties, the potential to study these phenomena by directly controlling their coherent polarization dynamics has not been fully realized. In this work, we use a sub-10 fs pulse shaper to study how temporal control of coherent exciton polarization affects the generation of four-wave mixing in monolayer under ambient conditions. By tailoring multiphoton pathway interference, we tune the nonlinear response from destructive to constructive interference, resulting in a 2.6-fold enhancement over the four-wave mixing generated by a transform-limited pulse. This demonstrates a general method for nonlinear enhancement by shaping the pulse to counteract the temporal dispersion experienced during resonant light-matter interactions. Our method allows us to excite both 1s and 2s states, showcasing a selective control over the resonant state that produces nonlinearity. By comparing our results with theory, we find that exciton-exciton interactions dominate the nonlinear response, rather than Pauli blocking. This capability to manipulate exciton polarization dynamics in atomically thin crystals lays the groundwork for exploring a wide range of resonant phenomena in condensed matter systems and opens up new possibilities for precise optical control in advanced optoelectronic devices.
二维半导体中强束缚激子的超快形成,为研究基础物理以及开发新型光电器件技术提供了一个丰富的平台。尽管已有大量研究探索了激子相干性、多体相互作用和非线性光学性质,但通过直接控制其相干极化动力学来研究这些现象的潜力尚未得到充分实现。在这项工作中,我们使用亚10飞秒脉冲整形器,研究在环境条件下,对单层相干激子极化的时间控制如何影响四波混频的产生。通过调整多光子路径干涉,我们将非线性响应从相消干涉调至相长干涉,使得四波混频比由变换极限脉冲产生的增强了2.6倍。这展示了一种通过整形脉冲来抵消共振光与物质相互作用期间所经历的时间色散从而实现非线性增强的通用方法。我们的方法能够激发1s和2s态,展示了对产生非线性的共振态的选择性控制。通过将我们的结果与理论进行比较,我们发现激子 - 激子相互作用主导非线性响应,而非泡利阻塞。这种在原子级薄晶体中操纵激子极化动力学的能力,为探索凝聚态物质系统中的各种共振现象奠定了基础,并为先进光电器件中的精确光学控制开辟了新的可能性。