Suppr超能文献

拉曼光谱和机器学习算法在果酒鉴别中的应用。

Application of Raman spectroscopy and Machine Learning algorithms for fruit distillates discrimination.

机构信息

National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293, Cluj-Napoca, Romania.

出版信息

Sci Rep. 2020 Dec 3;10(1):21152. doi: 10.1038/s41598-020-78159-8.

Abstract

Through this pilot study, the association between Raman spectroscopy and Machine Learning algorithms were used for the first time with the purpose of distillates differentiation with respect to trademark, geographical and botanical origin. Two spectral Raman ranges (region I-200-600 cm and region II-1200-1400 cm) appeared to have the higher discrimination potential for the investigated distillates. The proposed approach proved to be a very effective one for trademark fingerprint differentiation, a model accuracy of 95.5% being obtained (only one sample was misclassified). A comparable model accuracy (90.9%) was achieved for the geographical discrimination of the fruit spirits which can be considered as a very good one taking into account that this classification was made inside Transylvania region, among neighbouring areas. Because the trademark fingerprint is the prevailing one, the successfully distillate type differentiation, with respect to the fruit variety, was possible to be made only inside of each producing entity.

摘要

通过这项初步研究,拉曼光谱首次与机器学习算法相结合,旨在根据商标、地理和植物来源对馏分进行区分。两个光谱拉曼范围(区域 I-200-600 cm 和区域 II-1200-1400 cm)似乎对所研究的馏分具有更高的区分潜力。所提出的方法被证明是一种非常有效的商标指纹区分方法,获得了 95.5%的模型准确性(只有一个样本被错误分类)。对于水果烈酒的地理区分,也获得了类似的模型准确性(90.9%),这可以被认为是非常好的,因为这种分类是在特兰西瓦尼亚地区的邻近地区进行的。由于商标指纹是主要的,因此只能在每个生产实体内部,根据水果品种成功地对馏分类型进行区分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d267/7713252/b1ccbcbda0b3/41598_2020_78159_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验