Neumann Svenja, Wenger Oliver S, Kerzig Christoph
Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland.
Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.
Chemistry. 2021 Feb 24;27(12):4115-4123. doi: 10.1002/chem.202004638. Epub 2021 Jan 28.
One-electron reduced metal complexes derived from photoactive ruthenium or iridium complexes are important intermediates for substrate activation steps in photoredox catalysis and for the photocatalytic generation of solar fuels. However, owing to the heavy atom effect, direct photochemical pathways to these key intermediates suffer from intrinsic efficiency problems resulting from rapid geminate recombination of radical pairs within the so-called solvent cage. In this study, we prepared and investigated molecular dyads capable of producing reduced metal complexes via an indirect pathway relying on a sequence of energy and electron transfer processes between a Ru complex and a covalently connected anthracene moiety. Our test reaction to establish the proof-of-concept is the photochemical reduction of ruthenium(tris)bipyridine by the ascorbate dianion as sacrificial donor in aqueous solution. The photochemical key step in the Ru-anthracene dyads is the reduction of a purely organic (anthracene) triplet excited state by the ascorbate dianion, yielding a spin-correlated radical pair whose (unproductive) recombination is strongly spin-forbidden. By carrying out detailed laser flash photolysis investigations, we provide clear evidence for the indirect reduced metal complex generation mechanism and show that this pathway can outperform the conventional direct metal complex photoreduction. The further optimization of our approach involving relatively simple molecular dyads might result in novel photocatalysts that convert substrates with unprecedented quantum yields.
源自光活性钌或铱配合物的单电子还原金属配合物,是光氧化还原催化中底物活化步骤以及太阳能燃料光催化生成过程中的重要中间体。然而,由于重原子效应,通往这些关键中间体的直接光化学途径存在固有效率问题,这是由所谓溶剂笼内自由基对的快速双分子复合所导致的。在本研究中,我们制备并研究了一类分子二元体系,该体系能够通过间接途径生成还原金属配合物,此间接途径依赖于钌配合物与共价连接的蒽部分之间的一系列能量和电子转移过程。我们用于建立概念验证的测试反应,是在水溶液中以抗坏血酸二价阴离子作为牺牲供体对三联吡啶钌进行光化学还原。钌 - 蒽二元体系中的光化学关键步骤,是抗坏血酸二价阴离子对纯有机(蒽)三重激发态的还原,生成一个自旋相关的自由基对,其(无生产性的)复合受到强烈的自旋禁阻。通过进行详细的激光闪光光解研究,我们为间接生成还原金属配合物的机制提供了明确证据,并表明该途径能够优于传统的直接金属配合物光还原。对我们涉及相对简单分子二元体系的方法进行进一步优化,可能会产生以空前量子产率转化底物的新型光催化剂。