Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Industrial and Operations Engineering, Robotics Institute, University of Michigan, 1205 Beal Avenue, Ann Arbor, MI 48109, USA.
Sensors (Basel). 2020 Dec 2;20(23):6887. doi: 10.3390/s20236887.
Traditionally, inertial measurement units- (IMU) based human joint angle estimation requires a priori knowledge about sensor alignment or specific calibration motions. Furthermore, magnetometer measurements can become unreliable indoors. Without magnetometers, however, IMUs lack a heading reference, which leads to unobservability issues. This paper proposes a magnetometer-free estimation method, which provides desirable observability qualities under joint kinematics that sufficiently excite the lower body degrees of freedom. The proposed lower body model expands on the current self-calibrating human-IMU estimation literature and demonstrates a novel knee hinge model, the inclusion of segment length anthropometry, segment cross-leg length discrepancy, and the relationship between the knee axis and femur/tibia segment. The maximum a posteriori problem is formulated as a factor graph and inference is performed via post-hoc, on-manifold global optimization. The method is evaluated ( = 12) for a prescribed human motion profile task. Accuracy of derived knee flexion/extension angle (4.34∘ root mean square error (RMSE)) without magnetometers is similar to current state-of-the-art with magnetometer use. The developed framework can be expanded for modeling additional joints and constraints.
传统上,基于惯性测量单元 (IMU) 的人体关节角度估计需要关于传感器对准或特定校准运动的先验知识。此外,磁力计测量在室内可能变得不可靠。然而,没有磁力计,IMU 就缺乏航向参考,这导致不可观测性问题。本文提出了一种无磁力计估计方法,该方法在充分激发下半身自由度的关节运动下提供了理想的可观测性质量。所提出的下半身模型扩展了当前的自校准人体-IMU 估计文献,并展示了一种新的膝盖铰链模型,包括节段长度人体测量学、节段交叉腿长差异以及膝盖轴与股骨/胫骨节段之间的关系。最大后验问题被表述为因子图,通过事后、基于流形的全局优化来进行推断。该方法针对规定的人体运动轮廓任务进行了评估(n = 12)。在没有磁力计的情况下,得出的膝盖弯曲/伸展角度的准确性(4.34∘均方根误差 (RMSE))与使用磁力计的当前最新技术相似。所开发的框架可以扩展到建模其他关节和约束。