Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Harvard-MIT Division of Health Sciences & Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Sensors (Basel). 2018 Jun 8;18(6):1882. doi: 10.3390/s18061882.
Inertial measurement units (IMUs) have been demonstrated to reliably measure human joint angles—an essential quantity in the study of biomechanics. However, most previous literature proposed IMU-based joint angle measurement systems that required manual alignment or prescribed calibration motions. This paper presents a simple, physically-intuitive method for IMU-based measurement of the knee flexion/extension angle in gait without requiring alignment or discrete calibration, based on computationally-efficient and easy-to-implement Principle Component Analysis (PCA). The method is compared against an optical motion capture knee flexion/extension angle modeled through OpenSim. The method is evaluated using both measured and simulated IMU data in an observational study ( = 15) with an absolute root-mean-square-error (RMSE) of 9.24∘ and a zero-mean RMSE of 3.49∘. Variation in error across subjects was found, made emergent by the larger subject population than previous literature considers. Finally, the paper presents an explanatory model of RMSE on IMU mounting location. The observational data suggest that RMSE of the method is a function of thigh IMU perturbation and axis estimation quality. However, the effect size for these parameters is small in comparison to potential gains from improved IMU orientation estimations. Results also highlight the need to set relevant datums from which to interpret joint angles for both truth references and estimated data.
惯性测量单元 (IMU) 已被证明可可靠地测量人体关节角度——这是生物力学研究中的一个基本量。然而,大多数先前的文献提出的基于 IMU 的关节角度测量系统需要手动对准或规定的校准运动。本文提出了一种简单、直观的基于 IMU 的测量方法,无需对准或离散校准,即可在步态中测量膝关节的屈伸角度,该方法基于计算效率高且易于实现的主成分分析 (PCA)。该方法与通过 OpenSim 建模的光学运动捕捉膝关节屈伸角度进行了比较。该方法在一项观察性研究( = 15)中使用实测和模拟 IMU 数据进行了评估,绝对均方根误差 (RMSE) 为 9.24∘,零均值 RMSE 为 3.49∘。研究发现,由于研究对象的数量比以前的文献中考虑的要多,因此误差在不同研究对象之间存在差异。最后,本文提出了一种基于 IMU 安装位置的 RMSE 解释模型。观察数据表明,该方法的 RMSE 是大腿 IMU 干扰和轴估计质量的函数。然而,与改进的 IMU 方向估计带来的潜在收益相比,这些参数的效应大小较小。结果还强调了需要设置相关基准,以便从真实参考和估计数据中解释关节角度。