Consoli F, Andreoli P L, Cipriani M, Cristofari G, De Angelis R, Di Giorgio G, Duvillaret L, Krása J, Neely D, Salvadori M, Scisciò M, Smith R A, Tikhonchuk V T
ENEA, Fusion and Technologies for Nuclear Safety Department, C.R. Frascati, Via Enrico Fermi 45, Frascati, Roma, Italy.
Kapteos, Alpespace - bât. Cleanspace 354 voie Magellan 73800 Sainte-Hélène du Lac, France.
Philos Trans A Math Phys Eng Sci. 2021 Jan 25;379(2189):20200022. doi: 10.1098/rsta.2020.0022. Epub 2020 Dec 7.
When high-energy and high-power lasers interact with matter, a significant part of the incoming laser energy is transformed into transient electromagnetic pulses (EMPs) in the range of radiofrequencies and microwaves. These fields can reach high intensities and can potentially represent a significative danger for the electronic devices placed near the interaction point. Thus, the comprehension of the origin of these electromagnetic fields and of their distribution is of primary importance for the safe operation of high-power and high-energy laser facilities, but also for the possible use of these high fields in several promising applications. A recognized main source of EMPs is the target positive charging caused by the fast-electron emission due to laser-plasma interactions. The fast charging induces high neutralization currents from the conductive walls of the vacuum chamber through the target holder. However, other mechanisms related to the laser-target interaction are also capable of generating intense electromagnetic fields. Several possible sources of EMPs are discussed here and compared for high-energy and high-intensity laser-matter interactions, typical for inertial confinement fusion and laser-plasma acceleration. The possible effects on the electromagnetic field distribution within the experimental chamber, due to particle beams and plasma emitted from the target, are also described. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.
当高能量和高功率激光与物质相互作用时,入射激光能量的很大一部分会转化为射频和微波范围内的瞬态电磁脉冲(EMP)。这些场可以达到高强度,并且可能对放置在相互作用点附近的电子设备构成重大危险。因此,理解这些电磁场的起源及其分布对于高功率和高能量激光设施的安全运行至关重要,对于在一些有前景的应用中可能使用这些高场也很重要。公认的电磁脉冲主要来源是由于激光 - 等离子体相互作用导致的快速电子发射引起的靶体正电荷积累。快速充电会在真空室的导电壁上通过靶架感应出高中和电流。然而,与激光 - 靶相互作用相关的其他机制也能够产生强电磁场。本文讨论了电磁脉冲的几种可能来源,并针对惯性约束聚变和激光 - 等离子体加速中典型的高能量和高强度激光 - 物质相互作用进行了比较。还描述了由于靶体发射的粒子束和等离子体对实验室内电磁场分布可能产生的影响。本文是“高增益惯性聚变能源前景(第2部分)”讨论会议论文集的一部分。