Suppr超能文献

运用综合生物信息学分析鉴定 和 作为胰腺导管腺癌预后生物标志物的潜在组合。 (原文中“Identifying and”部分内容不完整,请确认准确信息后再让我翻译)

Identifying and as a potential combination of prognostic biomarkers in pancreatic ductal adenocarcinoma using integrated bioinformatics analysis.

作者信息

Ding Jingyi, Liu Yanxi, Lai Yu

机构信息

Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.

University of California, Los Angeles, Los Angeles, CA, United States of America.

出版信息

PeerJ. 2020 Nov 23;8:e10419. doi: 10.7717/peerj.10419. eCollection 2020.

Abstract

BACKGROUND

Pancreatic ductal adenocarcinoma (PDAC) is a fatal malignant neoplasm. It is necessary to improve the understanding of the underlying molecular mechanisms and identify the key genes and signaling pathways involved in PDAC.

METHODS

The microarray datasets GSE28735, GSE62165, and GSE91035 were downloaded from the Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified by integrated bioinformatics analysis, including protein-protein interaction (PPI) network, Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The PPI network was established using the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape software. GO functional annotation and KEGG pathway analyses were performed using the Database for Annotation, Visualization, and Integrated Discovery. Hub genes were validated via the Gene Expression Profiling Interactive Analysis tool (GEPIA) and the Human Protein Atlas (HPA) website.

RESULTS

A total of 263 DEGs (167 upregulated and 96 downregulated) were common to the three datasets. We used STRING and Cytoscape software to establish the PPI network and then identified key modules. From the PPI network, 225 nodes and 803 edges were selected. The most significant module, which comprised 11 DEGs, was identified using the Molecular Complex Detection plugin. The top 20 hub genes, which were filtered by the CytoHubba plugin, comprised , , , , , , , , , , , , , , , , , , , and . These genes were validated using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, and the encoded proteins were subsequently validated using the HPA website. The GO analysis results showed that the most significantly enriched biological process, cellular component, and molecular function terms among the 20 hub genes were cell adhesion, proteinaceous extracellular matrix, and calcium ion binding, respectively. The KEGG pathway analysis showed that the 20 hub genes were mainly enriched in ECM-receptor interaction, focal adhesion, PI3K-Akt signaling pathway, and protein digestion and absorption. These findings indicated that and appear to be involved in the progression of PDAC. Moreover, patient survival analysis performed via the GEPIA using TCGA and GTEx databases demonstrated that the expression levels of and were correlated with a poor prognosis in PDAC patients ( < 0.05).

CONCLUSIONS

The results demonstrated that upregulation of and is associated with poor overall survival, and these might be a combination of prognostic biomarkers in PDAC.

摘要

背景

胰腺导管腺癌(PDAC)是一种致命的恶性肿瘤。有必要加深对其潜在分子机制的理解,并确定参与PDAC的关键基因和信号通路。

方法

从基因表达综合数据库下载微阵列数据集GSE28735、GSE62165和GSE91035。通过综合生物信息学分析鉴定差异表达基因(DEG),包括蛋白质-蛋白质相互作用(PPI)网络、基因本体论(GO)富集分析和京都基因与基因组百科全书(KEGG)通路富集分析。使用搜索相互作用基因的工具(STRING)和Cytoscape软件建立PPI网络。使用注释、可视化和综合发现数据库进行GO功能注释和KEGG通路分析。通过基因表达谱交互式分析工具(GEPIA)和人类蛋白质图谱(HPA)网站验证枢纽基因。

结果

三个数据集共有263个DEG(167个上调和96个下调)。我们使用STRING和Cytoscape软件建立PPI网络,然后识别关键模块。从PPI网络中,选择了225个节点和803条边。使用分子复合物检测插件识别出由11个DEG组成的最显著模块。通过CytoHubba插件筛选出的前20个枢纽基因包括 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 和 。使用癌症基因组图谱(TCGA)和基因型-组织表达(GTEx)数据库对这些基因进行验证,随后使用HPA网站对编码蛋白进行验证。GO分析结果表明,20个枢纽基因中最显著富集的生物学过程、细胞成分和分子功能术语分别是细胞粘附、蛋白质细胞外基质和钙离子结合。KEGG通路分析表明,20个枢纽基因主要富集在细胞外基质-受体相互作用、粘着斑、PI3K-Akt信号通路以及蛋白质消化和吸收。这些发现表明 和 似乎参与了PDAC的进展。此外,使用TCGA和GTEx数据库通过GEPIA进行的患者生存分析表明, 和 的表达水平与PDAC患者的不良预后相关( < 0.05)。

结论

结果表明, 和 的上调与总体生存率差相关,这些可能是PDAC中预后生物标志物 的组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae7d/7690310/eb348f352c3e/peerj-08-10419-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验