Suppr超能文献

锂离子电池中锂镍锰钴氧化物的探测深度依赖过渡金属氧化还原

Probing Depth-Dependent Transition-Metal Redox of Lithium Nickel, Manganese, and Cobalt Oxides in Li-Ion Batteries.

作者信息

Yu Yang, Karayaylali Pinar, Giordano Livia, Corchado-García Juan, Hwang Jonathan, Sokaras Dimosthenis, Maglia Filippo, Jung Roland, Gittleson Forrest S, Shao-Horn Yang

机构信息

SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.

BMW Group, Petuelring 130, 80788 München, Germany.

出版信息

ACS Appl Mater Interfaces. 2020 Dec 16;12(50):55865-55875. doi: 10.1021/acsami.0c16285. Epub 2020 Dec 7.

Abstract

Layered lithium nickel, manganese, and cobalt oxides (NMC) are among the most promising commercial positive electrodes in the past decades. Understanding the detailed surface and bulk redox processes of Ni-rich NMC can provide useful insights into material design options to boost reversible capacity and cycle life. Both hard X-ray absorption (XAS) of metal K-edges and soft XAS of metal L-edges collected from charged LiNiMnCoO (NMC622) and LiNiMnCoO (NMC811) showed that the charge capacity up to removing ∼0.7 Li/f.u. was accompanied with Ni oxidation in bulk and near the surface (up to 100 nm). Of significance to note is that nickel oxidation is primarily responsible for the charge capacity of NMC622 and 811 up to similar lithium removal (∼0.7 Li/f.u.) albeit charged to different potentials, beyond which was followed by Ni reduction near the surface (up to 100 nm) due to oxygen release and electrolyte parasitic reactions. This observation points toward several new strategies to enhance reversible redox capacities of Ni-rich and/or Co-free electrodes for high-energy Li-ion batteries.

摘要

层状锂镍锰钴氧化物(NMC)是过去几十年中最有前景的商用正极材料之一。了解富镍NMC详细的表面和体相氧化还原过程,可为提高可逆容量和循环寿命的材料设计选项提供有用的见解。从带电的LiNiMnCoO(NMC622)和LiNiMnCoO(NMC811)收集的金属K边硬X射线吸收(XAS)和金属L边软XAS均表明,在去除约0.7 Li/f.u.的电荷容量过程中,体相和近表面(高达100 nm)均伴随着镍的氧化。值得注意的是,尽管充电至不同电位,但在类似的锂去除量(约0.7 Li/f.u.)之前,镍氧化是NMC622和811电荷容量的主要原因,超过此值后,由于氧释放和电解质寄生反应,近表面(高达100 nm)会发生镍还原。这一观察结果为提高高能量锂离子电池富镍和/或无钴电极的可逆氧化还原容量指出了几种新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验