McClelland Innes, Booth Samuel G, Anthonisamy Nirmalesh N, Middlemiss Laurence A, Pérez Gabriel E, Cussen Edmund J, Baker Peter J, Cussen Serena A
Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD, United Kingdom.
The Faraday Institution, Quad One, Harwell Campus, Didcot OX11 0RA, United Kingdom.
Chem Mater. 2023 May 8;35(11):4149-4158. doi: 10.1021/acs.chemmater.2c03834. eCollection 2023 Jun 13.
Ni-rich layered oxide cathode materials such as LiNiMnCoO (NMC811) are widely tipped as the next-generation cathodes for lithium-ion batteries. The NMC class offers high capacities but suffers an irreversible first cycle capacity loss, a result of slow Li diffusion kinetics at a low state of charge. Understanding the origin of these kinetic hindrances to Li mobility inside the cathode is vital to negate the first cycle capacity loss in future materials design. Here, we report on the development of muon spectroscopy (μSR) to probe the Å-length scale Li ion diffusion in NMC811 during its first cycle and how this can be compared to electrochemical impedance spectroscopy (EIS) and the galvanostatic intermittent titration technique (GITT). Volume-averaged muon implantation enables measurements that are largely unaffected by interface/surface effects, thus providing a specific characterization of the fundamental bulk properties to complement surface-dominated electrochemical methods. First cycle measurements show that the bulk Li mobility is less affected than the surface Li mobility at full depth of discharge, indicating that sluggish surface diffusion is the likely cause of first cycle irreversible capacity loss. Additionally, we demonstrate that trends in the nuclear field distribution width of the implanted muons during cycling correlate with those observed in differential capacity, suggesting the sensitivity of this μSR parameter to structural changes during cycling.
富镍层状氧化物阴极材料,如LiNiMnCoO(NMC811),被广泛视为锂离子电池的下一代阴极材料。NMC系列具有高容量,但存在不可逆的首次循环容量损失,这是低充电状态下锂扩散动力学缓慢的结果。了解阴极内部锂迁移率这些动力学阻碍的根源,对于在未来材料设计中消除首次循环容量损失至关重要。在此,我们报告了μ子光谱(μSR)的发展,以探测NMC811在其首次循环期间埃长度尺度的锂离子扩散,以及如何将其与电化学阻抗谱(EIS)和恒电流间歇滴定技术(GITT)进行比较。体积平均μ子注入能够进行基本不受界面/表面效应影响的测量,从而提供基本体性质的特定表征,以补充以表面为主的电化学方法。首次循环测量表明,在完全放电深度下,体相锂迁移率受影响程度小于表面锂迁移率,这表明表面扩散缓慢可能是首次循环不可逆容量损失的原因。此外,我们证明了循环过程中注入μ子的核场分布宽度趋势与微分容量中观察到的趋势相关,这表明该μSR参数对循环过程中的结构变化敏感。