Suppr超能文献

CoSOV1Net:一种受视锥和空间对立型初级视觉皮层启发的用于轻量级显著目标检测的神经网络。

CoSOV1Net: A Cone- and Spatial-Opponent Primary Visual Cortex-Inspired Neural Network for Lightweight Salient Object Detection.

作者信息

Ndayikengurukiye Didier, Mignotte Max

机构信息

Département d'Informatique et de Recherche Opérationnelle, Université de Montréal, Montreal, QC H3C 3J7, Canada.

出版信息

Sensors (Basel). 2023 Jul 17;23(14):6450. doi: 10.3390/s23146450.

Abstract

Salient object-detection models attempt to mimic the human visual system's ability to select relevant objects in images. To this end, the development of deep neural networks on high-end computers has recently achieved high performance. However, developing deep neural network models with the same performance for resource-limited vision sensors or mobile devices remains a challenge. In this work, we propose CoSOV1net, a novel lightweight salient object-detection neural network model, inspired by the cone- and spatial-opponent processes of the primary visual cortex (V1), which inextricably link color and shape in human color perception. Our proposed model is trained from scratch, without using backbones from image classification or other tasks. Experiments on the most widely used and challenging datasets for salient object detection show that CoSOV1Net achieves competitive performance (i.e., Fβ=0.931 on the ECSSD dataset) with state-of-the-art salient object-detection models while having a low number of parameters (1.14 M), low FLOPS (1.4 G) and high FPS (211.2) on GPU (Nvidia GeForce RTX 3090 Ti) compared to the state of the art in lightweight or nonlightweight salient object-detection tasks. Thus, CoSOV1net has turned out to be a lightweight salient object-detection model that can be adapted to mobile environments and resource-constrained devices.

摘要

显著目标检测模型试图模仿人类视觉系统在图像中选择相关目标的能力。为此,高端计算机上深度神经网络的发展最近取得了高性能。然而,为资源有限的视觉传感器或移动设备开发具有相同性能的深度神经网络模型仍然是一个挑战。在这项工作中,我们提出了CoSOV1net,这是一种新颖的轻量级显著目标检测神经网络模型,其灵感来自于初级视觉皮层(V1)的锥体和空间对立过程,该过程在人类颜色感知中将颜色和形状紧密联系在一起。我们提出的模型是从头开始训练的,不使用来自图像分类或其他任务的主干。在用于显著目标检测的最广泛使用且具有挑战性的数据集上进行的实验表明,CoSOV1Net与最先进的显著目标检测模型相比,实现了具有竞争力的性能(即在ECSSD数据集上Fβ=0.931),同时在GPU(英伟达GeForce RTX 3090 Ti)上具有较少的参数(114万个)、较低的浮点运算次数(14亿次)和较高的每秒帧数(211.2),与轻量级或非轻量级显著目标检测任务的现有技术水平相比。因此,CoSOV1net已被证明是一种轻量级显著目标检测模型,可适应移动环境和资源受限的设备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d4a/10386563/6faff97acbdf/sensors-23-06450-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验