School of Artificial Intelligence, Henan Institute of Science and Technology, Xinxiang, 453003, China.
School of Information Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China.
Sci Rep. 2023 Mar 18;13(1):4510. doi: 10.1038/s41598-023-31551-6.
Existing salient object detection networks are large, have many parameters, are bulky and take up a lot of computational resources. Seriously hinder its application and promotion in boning robot. To solve this problem, this paper proposes a lightweight saliency detection algorithm for real-time localization of livestock meat bones. First, a lightweight feature extraction network based on multi-scale attention is constructed in the encoding stage. To ensure that more adequate salient object features are extracted with fewer parameters. Second, the fusion of jump connections is introduced in the decoding phase. Used to capture fine-grained semantics and coarse-grained semantics at full scale. Finally, we added a residual refinement module at the end of the backbone network. For optimizing salient target regions and boundaries. Experimental results on both publicly available datasets and self-made Pig leg X-ray (PLX) datasets show that. The proposed method is capable of ensuring first-class detection accuracy with 40 times less parameters than the conventional model. In the most challenging SOD dataset. The proposed algorithm in this paper achieves a value of Fωβ of 0.699. And the segmentation of livestock bones can be effectively performed on the homemade PLX dataset. Our model has a detection speed of 5fps on industrial control equipment.
现有的显著目标检测网络规模大、参数多、体积大,占用大量计算资源,严重阻碍了其在剔骨机器人中的应用和推广。针对这一问题,本文提出了一种用于实时定位牲畜肉骨的轻量化显著目标检测算法。首先,在编码阶段构建了一个基于多尺度注意力的轻量化特征提取网络,以确保用更少的参数提取更充足的显著目标特征。其次,在解码阶段引入了跳跃连接融合,用于在全尺度上捕获细粒度语义和粗粒度语义。最后,在骨干网络的末端添加了一个残差细化模块,用于优化显著目标区域和边界。在公开数据集和自制猪腿 X 射线 (PLX) 数据集上的实验结果表明,与传统模型相比,所提出的方法能够在参数减少 40 倍的情况下保证一流的检测精度。在最具挑战性的 SOD 数据集上,本文提出的算法达到了 Fωβ值为 0.699,并且可以有效地在自制的 PLX 数据集上对牲畜骨骼进行分割。我们的模型在工业控制设备上的检测速度为 5fps。