Suppr超能文献

神经营养因子(NGF)和神经营养因子 3(NT-3)等偏倚配体可差异化稳定 Trk-A 二聚体。

The Biased Ligands NGF and NT-3 Differentially Stabilize Trk-A Dimers.

机构信息

Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland.

Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland.

出版信息

Biophys J. 2021 Jan 5;120(1):55-63. doi: 10.1016/j.bpj.2020.11.2262. Epub 2020 Dec 5.

Abstract

Trk-A is a receptor tyrosine kinase (RTK) that plays an essential role in the development and functioning of the nervous system. Trk-A is expressed in neurons and signals in response to two ligands, NGF and neurotrophin-3 (NT-3), with very different functional consequences. Thus, NGF and NT-3 are "biased" ligands for Trk-A. Because it has been hypothesized that biased RTK ligands induce differential stabilization of RTK dimers, here, we seek to test this hypothesis for NGF and NT-3. In particular, we use Förster resonance energy transfer (FRET) and fluorescence intensity fluctuation spectroscopy to assess the strength of Trk-A interactions and Trk-A oligomer size in the presence of the two ligands. Although the difference in Trk-A behavior in response to the two ligands has been previously attributed to differences in their binding to Trk-A in the endosomes at low pH, here, we further show differences in the stabilities of the NGF- and NT-3-bound Trk-A dimers in the plasma membrane and at neutral pH. We discuss the biological significance of these new findings and their implications for the design of Trk-A ligands with novel functionalities.

摘要

Trk-A 是一种受体酪氨酸激酶(RTK),在神经系统的发育和功能中起着至关重要的作用。Trk-A 在神经元中表达,并响应两种配体,神经生长因子(NGF)和神经营养因子-3(NT-3),而产生非常不同的功能后果。因此,NGF 和 NT-3 是 Trk-A 的“偏向”配体。因为有人假设偏向性 RTK 配体诱导 RTK 二聚体的不同稳定性,在这里,我们试图针对 NGF 和 NT-3 来检验这一假设。具体来说,我们使用荧光共振能量转移(FRET)和荧光强度波动光谱来评估两种配体存在时 Trk-A 相互作用的强度和 Trk-A 寡聚体的大小。尽管先前已经将 Trk-A 对两种配体的反应差异归因于它们在低 pH 时在内体中与 Trk-A 的结合差异,但在这里,我们进一步显示了在质膜中和中性 pH 下,NGF 和 NT-3 结合的 Trk-A 二聚体的稳定性存在差异。我们讨论了这些新发现的生物学意义及其对具有新型功能的 Trk-A 配体设计的影响。

相似文献

1
The Biased Ligands NGF and NT-3 Differentially Stabilize Trk-A Dimers.
Biophys J. 2021 Jan 5;120(1):55-63. doi: 10.1016/j.bpj.2020.11.2262. Epub 2020 Dec 5.
2
Dimerization of the Trk receptors in the plasma membrane: effects of their cognate ligands.
Biochem J. 2018 Nov 30;475(22):3669-3685. doi: 10.1042/BCJ20180637.
3
Neurotrophins induce sphingomyelin hydrolysis. Modulation by co-expression of p75NTR with Trk receptors.
J Biol Chem. 1995 Sep 22;270(38):22135-42. doi: 10.1074/jbc.270.38.22135.
4
Differential cross-regulation of TrkA and TrkC tyrosine kinase receptors with p75.
Oncogene. 2003 Aug 28;22(36):5677-85. doi: 10.1038/sj.onc.1206864.
6
The biophysical basis of receptor tyrosine kinase ligand functional selectivity: Trk-B case study.
Biochem J. 2020 Dec 11;477(23):4515-4526. doi: 10.1042/BCJ20200671.
7
TrkA receptor "hot spots" for binding of NT-3 as a heterologous ligand.
J Biol Chem. 2007 Jun 8;282(23):16754-63. doi: 10.1074/jbc.M701996200. Epub 2007 Apr 17.
8
The cytoplasmic and transmembrane domains of the p75 and Trk A receptors regulate high affinity binding to nerve growth factor.
J Biol Chem. 2001 Aug 31;276(35):32687-95. doi: 10.1074/jbc.M011674200. Epub 2001 Jul 2.
9
Promoting neurotrophic effects by GPCR ligands.
Novartis Found Symp. 2006;276:181-9; discussion 189-92, 233-7, 275-81.

引用本文的文献

1
EphrinA2 promotes glioma cell migration and invasion through EphA2 and FAK.
Cancer Cell Int. 2025 May 24;25(1):191. doi: 10.1186/s12935-025-03826-7.
2
Molecular mechanism of aberrant decidualization in adenomyosis leading to reduced endometrial receptivity.
Front Endocrinol (Lausanne). 2025 Jan 16;15:1435177. doi: 10.3389/fendo.2024.1435177. eCollection 2024.
3
The Use of Neurotrophic Factors as a Promising Strategy for the Treatment of Neurodegenerative Diseases (Review).
Bull Exp Biol Med. 2024 Aug;177(4):517-527. doi: 10.1007/s10517-024-06218-5. Epub 2024 Sep 12.
4
Ligand bias underlies differential signaling of multiple FGFs via FGFR1.
Elife. 2024 Apr 3;12:RP88144. doi: 10.7554/eLife.88144.
5
Quantitative assessment of ligand bias from bias plots: The bias coefficient "kappa".
Biochim Biophys Acta Gen Subj. 2023 Oct;1867(10):130428. doi: 10.1016/j.bbagen.2023.130428. Epub 2023 Jul 23.
7
Human herpesvirus 8 molecular mimicry of ephrin ligands facilitates cell entry and triggers EphA2 signaling.
PLoS Biol. 2021 Sep 9;19(9):e3001392. doi: 10.1371/journal.pbio.3001392. eCollection 2021 Sep.
8
Fluorescence intensity fluctuation analysis of receptor oligomerization in membrane domains.
Biophys J. 2021 Aug 3;120(15):3028-3039. doi: 10.1016/j.bpj.2021.06.015. Epub 2021 Jun 30.
9
A cancer mutation promotes EphA4 oligomerization and signaling by altering the conformation of the SAM domain.
J Biol Chem. 2021 Jul;297(1):100876. doi: 10.1016/j.jbc.2021.100876. Epub 2021 Jun 15.
10
P120 catenin potentiates constitutive E-cadherin dimerization at the plasma membrane and regulates trans binding.
Curr Biol. 2021 Jul 26;31(14):3017-3027.e7. doi: 10.1016/j.cub.2021.04.061. Epub 2021 May 20.

本文引用的文献

1
3
Revisiting a controversy: The effect of EGF on EGFR dimer stability.
Biochim Biophys Acta Biomembr. 2020 Jan 1;1862(1):183015. doi: 10.1016/j.bbamem.2019.07.003. Epub 2019 Jul 8.
4
A general method to quantify ligand-driven oligomerization from fluorescence-based images.
Nat Methods. 2019 Jun;16(6):493-496. doi: 10.1038/s41592-019-0408-9. Epub 2019 May 20.
5
Oligomeric Architecture of Mouse Activating Nkrp1 Receptors on Living Cells.
Int J Mol Sci. 2019 Apr 16;20(8):1884. doi: 10.3390/ijms20081884.
6
Biased Receptor Signaling in Drug Discovery.
Pharmacol Rev. 2019 Apr;71(2):267-315. doi: 10.1124/pr.118.016790.
7
Dimerization of the Trk receptors in the plasma membrane: effects of their cognate ligands.
Biochem J. 2018 Nov 30;475(22):3669-3685. doi: 10.1042/BCJ20180637.
8
The EphA2 receptor is activated through induction of distinct, ligand-dependent oligomeric structures.
Commun Biol. 2018 Feb 22;1:15. doi: 10.1038/s42003-018-0017-7. eCollection 2018.
9
A threshold model for receptor tyrosine kinase signaling specificity and cell fate determination.
F1000Res. 2018 Jun 21;7. doi: 10.12688/f1000research.14143.1. eCollection 2018.
10
Biased G Protein-Coupled Receptor Signaling: Changing the Paradigm of Drug Discovery.
Circulation. 2018 May 29;137(22):2315-2317. doi: 10.1161/CIRCULATIONAHA.117.028194.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验