Suppr超能文献

从偏倚图定量评估配体偏倚:偏倚系数“kappa”。

Quantitative assessment of ligand bias from bias plots: The bias coefficient "kappa".

机构信息

Institute for NanoBioTechnology, Department of Materials Science and Engineering, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, United States of America.

Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States of America.

出版信息

Biochim Biophys Acta Gen Subj. 2023 Oct;1867(10):130428. doi: 10.1016/j.bbagen.2023.130428. Epub 2023 Jul 23.

Abstract

The current methods for quantifying ligand bias involve the construction of bias plots and the calculations of bias coefficients that can be compared using statistical methods. However, widely used bias coefficients can diverge in their abilities to identify ligand bias and can give false positives. As the empirical bias plots are considered the most reliable tools in bias identification, here we develop an analytical description of bias plot trajectories and introduce a bias coefficient, kappa, which is calculated from these trajectories. The new bias coefficient complements the tool-set in ligand bias identification in cell signaling research.

摘要

目前,量化配体偏向的方法涉及构建偏向图和计算可以使用统计方法进行比较的偏向系数。然而,广泛使用的偏向系数在识别配体偏向的能力上可能存在差异,并可能产生假阳性。由于经验偏向图被认为是识别偏向的最可靠工具,因此我们在这里对偏向图轨迹进行了分析描述,并引入了一个新的偏向系数 kappa,该系数是从这些轨迹中计算得出的。该新的偏向系数补充了细胞信号研究中配体偏向识别的工具集。

相似文献

1
Quantitative assessment of ligand bias from bias plots: The bias coefficient "kappa".
Biochim Biophys Acta Gen Subj. 2023 Oct;1867(10):130428. doi: 10.1016/j.bbagen.2023.130428. Epub 2023 Jul 23.
2
Ligand bias in receptor tyrosine kinase signaling.
J Biol Chem. 2020 Dec 25;295(52):18494-18507. doi: 10.1074/jbc.REV120.015190. Epub 2020 Oct 29.
3
Signaling Properties of Structurally Diverse Kappa Opioid Receptor Ligands: Toward in Vitro Models of in Vivo Responses.
ACS Chem Neurosci. 2019 Aug 21;10(8):3590-3600. doi: 10.1021/acschemneuro.9b00195. Epub 2019 Jul 31.
6
Quantifying the risk of error when interpreting funnel plots.
Syst Rev. 2015 Mar 11;4:24. doi: 10.1186/s13643-015-0004-8.
9
Modeling of bias for the analysis of receptor signaling in biochemical systems.
Biochemistry. 2012 Feb 14;51(6):1114-25. doi: 10.1021/bi201308s. Epub 2012 Feb 2.
10
Ligand bias underlies differential signaling of multiple FGFs via FGFR1.
Elife. 2024 Apr 3;12:RP88144. doi: 10.7554/eLife.88144.

引用本文的文献

1
Differential association of EphA2 intracellular regions in biased signaling.
J Biol Chem. 2025 Apr;301(4):108383. doi: 10.1016/j.jbc.2025.108383. Epub 2025 Mar 4.

本文引用的文献

1
Community guidelines for GPCR ligand bias: IUPHAR review 32.
Br J Pharmacol. 2022 Jul;179(14):3651-3674. doi: 10.1111/bph.15811. Epub 2022 Mar 27.
2
The Biased Ligands NGF and NT-3 Differentially Stabilize Trk-A Dimers.
Biophys J. 2021 Jan 5;120(1):55-63. doi: 10.1016/j.bpj.2020.11.2262. Epub 2020 Dec 5.
3
Ligand bias in receptor tyrosine kinase signaling.
J Biol Chem. 2020 Dec 25;295(52):18494-18507. doi: 10.1074/jbc.REV120.015190. Epub 2020 Oct 29.
4
The biophysical basis of receptor tyrosine kinase ligand functional selectivity: Trk-B case study.
Biochem J. 2020 Dec 11;477(23):4515-4526. doi: 10.1042/BCJ20200671.
5
Receptor tyrosine kinase activation: From the ligand perspective.
Curr Opin Cell Biol. 2020 Apr;63:174-185. doi: 10.1016/j.ceb.2020.01.016. Epub 2020 Feb 27.
6
Biased Receptor Signaling in Drug Discovery.
Pharmacol Rev. 2019 Apr;71(2):267-315. doi: 10.1124/pr.118.016790.
7
Strategies for the discovery of biased GPCR ligands.
Drug Discov Today. 2019 Apr;24(4):1031-1037. doi: 10.1016/j.drudis.2019.02.010. Epub 2019 Mar 1.
8
An intact model for quantifying functional selectivity.
Sci Rep. 2019 Feb 22;9(1):2557. doi: 10.1038/s41598-019-39000-z.
9
Angiotensin Analogs with Divergent Bias Stabilize Distinct Receptor Conformations.
Cell. 2019 Jan 24;176(3):468-478.e11. doi: 10.1016/j.cell.2018.12.005. Epub 2019 Jan 10.
10
Analysis of Biased Agonism.
Prog Mol Biol Transl Sci. 2018;160:63-104. doi: 10.1016/bs.pmbts.2018.08.001. Epub 2018 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验