Sansavini Francesca, Parigi Valentina
Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL Research University, Collège de France, 4 Place Jussieu, F-75252 Paris, France.
Entropy (Basel). 2019 Dec 24;22(1):26. doi: 10.3390/e22010026.
Complex networks structures have been extensively used for describing complex natural and technological systems, like the Internet or social networks. More recently, complex network theory has been applied to quantum systems, where complex network topologies may emerge in multiparty quantum states and quantum algorithms have been studied in complex graph structures. In this work, we study multimode Continuous Variables entangled states, named cluster states, where the entanglement structure is arranged in typical real-world complex networks shapes. Cluster states are a resource for measurement-based quantum information protocols, where the quality of a cluster is assessed in terms of the minimal amount of noise it introduces in the computation. We study optimal graph states that can be obtained with experimentally realistic quantum resources, when optimized via analytical procedure. We show that denser and regular graphs allow for better optimization. In the spirit of quantum routing, we also show the reshaping of entanglement connections in small networks via linear optics operations based on numerical optimization.
复杂网络结构已被广泛用于描述复杂的自然和技术系统,如互联网或社交网络。最近,复杂网络理论已应用于量子系统,其中复杂网络拓扑可能出现在多方量子态中,并且已经在复杂图结构中研究了量子算法。在这项工作中,我们研究多模连续变量纠缠态,即簇态,其中纠缠结构以典型的现实世界复杂网络形状排列。簇态是基于测量的量子信息协议的一种资源,其中簇的质量是根据其在计算中引入的最小噪声量来评估的。当通过解析程序进行优化时,我们研究了可以用实验上可行的量子资源获得的最优图态。我们表明,更密集和规则的图允许更好的优化。本着量子路由的精神,我们还基于数值优化展示了通过线性光学操作在小网络中纠缠连接的重塑。