Suppr超能文献

化学反应网络具有内在的、温度依赖性的功能。

Chemical Reaction Networks Possess Intrinsic, Temperature-Dependent Functionality.

作者信息

Adler Stephan O, Klipp Edda

机构信息

Theoretical Biophysics, Humboldt-Universität zu Berlin, 10099 Berlin, Germany.

出版信息

Entropy (Basel). 2020 Jan 18;22(1):117. doi: 10.3390/e22010117.

Abstract

Temperature influences the life of many organisms in various ways. A great number of organisms live under conditions where their ability to adapt to changes in temperature can be vital and largely determines their fitness. Understanding the mechanisms and principles underlying this ability to adapt can be of great advantage, for example, to improve growth conditions for crops and increase their yield. In times of imminent, increasing climate change, this becomes even more important in order to find strategies and help crops cope with these fundamental changes. There is intense research in the field of acclimation that comprises fluctuations of various environmental conditions, but most acclimation research focuses on regulatory effects and the observation of gene expression changes within the examined organism. As thermodynamic effects are a direct consequence of temperature changes, these should necessarily be considered in this field of research but are often neglected. Additionally, compensated effects might be missed even though they are equally important for the organism, since they do not cause observable changes, but rather counteract them. In this work, using a systems biology approach, we demonstrate that even simple network motifs can exhibit temperature-dependent functional features resulting from the interplay of network structure and the distribution of activation energies over the involved reactions. The demonstrated functional features are (i) the reversal of fluxes within a linear pathway, (ii) a thermo-selective branched pathway with different flux modes and (iii) the increased flux towards carbohydrates in a minimal Calvin cycle that was designed to demonstrate temperature compensation within reaction networks. Comparing a system's response to either temperature changes or changes in enzyme activity we also dissect the influence of thermodynamic changes versus genetic regulation. By this, we expand the scope of thermodynamic modelling of biochemical processes by addressing further possibilities and effects, following established mathematical descriptions of biophysical properties.

摘要

温度以多种方式影响许多生物体的生命活动。大量生物体生活在这样的条件下,即它们适应温度变化的能力至关重要,并且在很大程度上决定了它们的适应性。了解这种适应能力背后的机制和原理可能具有很大的优势,例如,改善作物的生长条件并提高其产量。在即将到来的气候变化日益加剧的时代,为了找到应对策略并帮助作物应对这些根本性变化,这一点变得更加重要。在驯化领域有大量研究,其中包括各种环境条件的波动,但大多数驯化研究都集中在调节作用以及所研究生物体内基因表达变化的观察上。由于热力学效应是温度变化的直接结果,因此在这个研究领域中必然应该考虑这些效应,但它们却常常被忽视。此外,即使补偿效应对于生物体同样重要,也可能会被忽略,因为它们不会引起可观察到的变化,而是起到抵消这些变化的作用。在这项工作中,我们采用系统生物学方法证明,即使是简单的网络基序也可以表现出温度依赖性的功能特征,这些特征是由网络结构与所涉及反应的活化能分布之间的相互作用产生的。所展示的功能特征包括:(i)线性途径内通量的逆转;(ii)具有不同通量模式的热选择性分支途径;(iii)在一个最小卡尔文循环中增加向碳水化合物的通量,该循环旨在证明反应网络内的温度补偿。通过比较系统对温度变化或酶活性变化的响应,我们还剖析了热力学变化与基因调控的影响。由此,我们通过遵循生物物理性质的既定数学描述,探讨更多可能性和效应,从而扩展了生化过程热力学建模的范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eca/7516423/236ad29879a7/entropy-22-00117-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验