Chimal-Eguía Juan Carlos, Castillo-Montiel Erandi, Paez-Hernández Ricardo T
Centro de Investigación en Computación del Instituto Politécnico Nacional, Av. Miguel Othon de Mendizabal s/n. Col. La Escalera, Ciudad de México CP 07738, Mexico.
Department of Técnologias WEB, Instituto Politécnico Nacional (IPN) - Centro Nacional de Cálculo (CENAC), Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Gustavo A. Madero, Ciudad de México CP 07738, Mexico.
Entropy (Basel). 2020 Jan 31;22(2):166. doi: 10.3390/e22020166.
This work presents an analysis for real and synthetic angiogenic networks using a tomography image that obtains a portrait of a vascular network. After the image conversion into a binary format it is possible to measure various network properties, which includes the average path length, the clustering coefficient, the degree distribution and the fractal dimension. When comparing the observed properties with that produced by the Invasion Percolation algorithm (IPA), we observe that there exist differences between the properties obtained by the real and the synthetic networks produced by the IPA algorithm. Taking into account the former, a new algorithm which models the expansion of an angiogenic network through randomly heuristic rules is proposed. When comparing this new algorithm with the real networks it is observed that now both share some properties. Once creating synthetic networks, we prove the robustness of the network by subjecting the original angiogenic and the synthetic networks to the removal of the most connected nodes, and see to what extent the properties changed. Using this concept of robustness, in a very naive fashion it is possible to launch a hypothetical proposal for a therapeutic treatment based on the robustness of the network.
这项工作使用获取血管网络图像的断层扫描图像对真实和合成的血管生成网络进行了分析。在将图像转换为二进制格式后,可以测量各种网络属性,包括平均路径长度、聚类系数、度分布和分形维数。当将观察到的属性与入侵渗流算法(IPA)产生的属性进行比较时,我们观察到真实网络和IPA算法产生的合成网络所获得的属性之间存在差异。考虑到前者,提出了一种通过随机启发式规则对血管生成网络扩展进行建模的新算法。当将这种新算法与真实网络进行比较时,可以观察到现在两者共享一些属性。一旦创建了合成网络,我们通过对原始血管生成网络和合成网络去除连接最紧密的节点来证明网络的鲁棒性,并观察属性在多大程度上发生了变化。使用这种鲁棒性概念,以一种非常简单的方式可以基于网络的鲁棒性提出一个假设的治疗方案。