Suppr超能文献

熵的时间尺度分解在眼动分析中的应用。

Application of Time-Scale Decomposition of Entropy for Eye Movement Analysis.

作者信息

Harezlak Katarzyna, Kasprowski Pawel

机构信息

Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland.

出版信息

Entropy (Basel). 2020 Feb 1;22(2):168. doi: 10.3390/e22020168.

Abstract

The methods for nonlinear time series analysis were used in the presented research to reveal eye movement signal characteristics. Three measures were used: approximate entropy, fuzzy entropy, and the Largest Lyapunov Exponent, for which the multilevel maps (MMs), being their time-scale decomposition, were defined. To check whether the estimated characteristics might be useful in eye movement events detection, these structures were applied in the classification process conducted with the usage of the kNN method. The elements of three MMs were used to define feature vectors for this process. They consisted of differently combined MM segments, belonging either to one or several selected levels, as well as included values either of one or all the analysed measures. Such a classification produced an improvement in the accuracy for saccadic latency and saccade, when compared with the previously conducted studies using eye movement dynamics.

摘要

本研究采用非线性时间序列分析方法来揭示眼动信号特征。使用了三种测量方法:近似熵、模糊熵和最大Lyapunov指数,并定义了作为其时间尺度分解的多级映射(MMs)。为了检验估计的特征是否可用于眼动事件检测,将这些结构应用于使用kNN方法进行的分类过程中。三个MMs的元素用于定义此过程的特征向量。它们由不同组合的MM段组成,这些段属于一个或几个选定的级别,并且还包括一个或所有分析测量值。与之前使用眼动动力学进行的研究相比,这种分类提高了扫视潜伏期和扫视的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c531/7516586/3a35dcfee560/entropy-22-00168-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验