Suppr超能文献

关于最终全局膨胀或收缩概率约束下事件的熵。在疫苗接种控制下对流行病模型的监督中的应用。

On the Entropy of Events under Eventually Global Inflated or Deflated Probability Constraints. Application to the Supervision of Epidemic Models under Vaccination Controls.

作者信息

De la Sen Manuel, Ibeas Asier, Nistal Raul

机构信息

Institute of Research and Development of Processes IIDP, University of the Basque Country, Campus of Leioa, 48940 Leioa, Spain.

Department of Telecommunications and Systems Engineering, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.

出版信息

Entropy (Basel). 2020 Feb 29;22(3):284. doi: 10.3390/e22030284.

Abstract

This paper extends the formulation of the Shannon entropy under probabilistic uncertainties which are basically established in terms or relative errors related to the theoretical nominal set of events. Those uncertainties can eventually translate into globally inflated or deflated probabilistic constraints. In the first case, the global probability of all the events exceeds unity while in the second one lies below unity. A simple interpretation is that the whole set of events losses completeness and that some events of negative probability might be incorporated to keep the completeness of an extended set of events. The proposed formalism is flexible enough to evaluate the need to introduce compensatory probability events or not depending on each particular application. In particular, such a design flexibility is emphasized through an application which is given related to epidemic models under vaccination and treatment controls. Switching rules are proposed to choose through time the active model, among a predefined set of models organized in a parallel structure, which better describes the registered epidemic evolution data. The supervisory monitoring is performed in the sense that the tested accumulated entropy of the absolute error of the model versus the observed data is minimized at each supervision time-interval occurring in-between each two consecutive switching time instants. The active model generates the (vaccination/treatment) controls to be injected to the monitored population. In this application, it is not proposed to introduce a compensatory event to complete the global probability to unity but instead, the estimated probabilities are re-adjusted to design the control gains.

摘要

本文扩展了概率不确定性下香农熵的公式,该公式基本上是根据与理论标称事件集相关的相对误差建立的。这些不确定性最终可能转化为全局膨胀或收缩的概率约束。在第一种情况下,所有事件的全局概率超过1,而在第二种情况下则低于1。一个简单的解释是,整个事件集失去了完整性,可能会纳入一些负概率事件以保持扩展事件集的完整性。所提出的形式主义足够灵活,可以根据每个特定应用评估是否需要引入补偿概率事件。特别是,通过一个与疫苗接种和治疗控制下的流行病模型相关的应用强调了这种设计灵活性。提出了切换规则,以便在以并行结构组织的预定义模型集中,随时间选择能更好描述已记录的流行病演变数据的活动模型。监督监测的执行方式是,在每两个连续切换时刻之间出现的每个监督时间间隔内,使模型相对于观测数据的绝对误差的测试累积熵最小化。活动模型生成要注入到受监测人群中的(疫苗接种/治疗)控制措施。在这个应用中,没有提议引入补偿事件以使全局概率达到1,而是重新调整估计概率以设计控制增益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c79/7516741/aeec76d64a7c/entropy-22-00284-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验