Suppr超能文献

利用信息动力学识别动态网络中的群落

Identifying Communities in Dynamic Networks Using Information Dynamics.

作者信息

Sun Zejun, Sheng Jinfang, Wang Bin, Ullah Aman, Khawaja FaizaRiaz

机构信息

School of Computer Science and Engineering, Central South University, Changsha 401302, China.

School of Information Engineering, Pingdingshan University, Pingdingshan 462500, China.

出版信息

Entropy (Basel). 2020 Apr 9;22(4):425. doi: 10.3390/e22040425.

Abstract

Identifying communities in dynamic networks is essential for exploring the latent network structures, understanding network functions, predicting network evolution, and discovering abnormal network events. Many dynamic community detection methods have been proposed from different viewpoints. However, identifying the community structure in dynamic networks is very challenging due to the difficulty of parameter tuning, high time complexity and detection accuracy decreasing as time slices increase. In this paper, we present a dynamic community detection framework based on information dynamics and develop a dynamic community detection algorithm called DCDID (dynamic community detection based on information dynamics), which uses a batch processing technique to incrementally uncover communities in dynamic networks. DCDID employs the information dynamics model to simulate the exchange of information among nodes and aims to improve the efficiency of community detection by filtering out the unchanged subgraph. To illustrate the effectiveness of DCDID, we extensively test it on synthetic and real-world dynamic networks, and the results demonstrate that the DCDID algorithm is superior to the representative methods in relation to the quality of dynamic community detection.

摘要

识别动态网络中的社区对于探索潜在的网络结构、理解网络功能、预测网络演化以及发现异常网络事件至关重要。已经从不同角度提出了许多动态社区检测方法。然而,由于参数调整困难、时间复杂度高以及随着时间片增加检测准确率下降,识别动态网络中的社区结构极具挑战性。在本文中,我们提出了一种基于信息动力学的动态社区检测框架,并开发了一种名为DCDID(基于信息动力学的动态社区检测)的动态社区检测算法,该算法使用批处理技术来逐步揭示动态网络中的社区。DCDID采用信息动力学模型来模拟节点之间的信息交换,旨在通过过滤掉不变的子图来提高社区检测的效率。为了说明DCDID的有效性,我们在合成和真实世界的动态网络上对其进行了广泛测试,结果表明DCDID算法在动态社区检测质量方面优于代表性方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验