Makeienko Maryna
Economia Aplicada y Estadistica, International Doctorate in Economics, Universidad Nacional de Educacion a Distancia, 28015 Madrid, Spain.
Entropy (Basel). 2020 Apr 20;22(4):466. doi: 10.3390/e22040466.
This article provides symbolic analysis tools for specifying spatial econometric models. It firstly considers testing spatial dependence in the presence of potential leading deterministic spatial components (similar to time-series tests for unit roots in the presence of temporal drift and/or time-trend) and secondly considers how to econometrically model spatial economic relations that might contain unobserved spatial structure of unknown form. Hypothesis testing is conducted with a based non-parametric statistical procedure, recently proposed by Garcia-Cordoba, Matilla-Garcia, and Ruiz (2019), which does not rely on prior weight matrices assumptions. It is shown that the use of geographically restricted semiparametric spatial models is a promising modeling strategy for cross-sectional datasets that are compatible with some types of spatial dependence. The results state that models that merely incorporate space coordinates might be sufficient to capture space dependence. Hedonic models for Baltimore, Boston, and Toledo housing prices datasets are revisited, studied (with the new proposed procedures), and compared with standard spatial econometric methodologies.
本文提供了用于指定空间计量模型的符号分析工具。它首先考虑在存在潜在主导确定性空间成分的情况下检验空间依赖性(类似于在存在时间漂移和/或时间趋势的情况下对单位根进行的时间序列检验),其次考虑如何对可能包含未知形式的未观测空间结构的空间经济关系进行计量建模。假设检验是通过基于 Garcia-Cordoba、Matilla-Garcia 和 Ruiz(2019 年)最近提出的非参数统计程序进行的,该程序不依赖于先验权重矩阵假设。结果表明,对于与某些类型的空间依赖性兼容的横截面数据集,使用地理受限的半参数空间模型是一种有前景的建模策略。结果表明,仅纳入空间坐标的模型可能足以捕捉空间依赖性。重新审视、研究(使用新提出的程序)了巴尔的摩、波士顿和托莱多房价数据集的享乐模型,并将其与标准空间计量方法进行了比较。