Suppr超能文献

基于黎曼流形的几何深度学习揭示静息态功能连接的形状特征。

Uncovering shape signatures of resting-state functional connectivity by geometric deep learning on Riemannian manifold.

机构信息

School of Computer Science and Engineering, South China University of Technology, Guangzhou, China.

Department of Radiology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA.

出版信息

Hum Brain Mapp. 2022 Sep;43(13):3970-3986. doi: 10.1002/hbm.25897. Epub 2022 May 10.

Abstract

Functional neural activities manifest geometric patterns, as evidenced by the evolving network topology of functional connectivities (FC) even in the resting state. In this work, we propose a novel manifold-based geometric neural network for functional brain networks (called "Geo-Net4Net" for short) to learn the intrinsic low-dimensional feature representations of resting-state brain networks on the Riemannian manifold. This tool allows us to answer the scientific question of how the spontaneous fluctuation of FC supports behavior and cognition. We deploy a set of positive maps and rectified linear unit (ReLU) layers to uncover the intrinsic low-dimensional feature representations of functional brain networks on the Riemannian manifold taking advantage of the symmetric positive-definite (SPD) form of the correlation matrices. Due to the lack of well-defined ground truth in the resting state, existing learning-based methods are limited to unsupervised methodologies. To go beyond this boundary, we propose to self-supervise the feature representation learning of resting-state functional networks by leveraging the task-based counterparts occurring before and after the underlying resting state. With this extra heuristic, our Geo-Net4Net allows us to establish a more reasonable understanding of resting-state FCs by capturing the geometric patterns (aka. spectral/shape signature) associated with resting states on the Riemannian manifold. We have conducted extensive experiments on both simulated data and task-based functional resonance magnetic imaging (fMRI) data from the Human Connectome Project (HCP) database, where our Geo-Net4Net not only achieves more accurate change detection results than other state-of-the-art counterpart methods but also yields ubiquitous geometric patterns that manifest putative insights into brain function.

摘要

功能神经活动表现出几何模式,这可以从功能连接(FC)的不断发展的网络拓扑结构中得到证明,即使在静息状态也是如此。在这项工作中,我们提出了一种新的基于流形的几何神经网络,用于学习静息态大脑网络在黎曼流形上的内在低维特征表示(简称“Geo-Net4Net”)。该工具使我们能够回答 FC 的自发波动如何支持行为和认知的科学问题。我们利用相关矩阵的对称正定(SPD)形式,通过一组正映射和修正线性单元(ReLU)层来揭示黎曼流形上功能大脑网络的内在低维特征表示。由于静息状态下缺乏明确的基准,现有的基于学习的方法仅限于无监督方法。为了超越这一界限,我们建议通过利用基础静息状态前后出现的基于任务的对应物来自我监督静息态功能网络的特征表示学习。通过这种额外的启发式方法,我们的 Geo-Net4Net 可以通过捕捉与黎曼流形上的静息状态相关的几何模式(即谱/形状特征),来更好地理解静息状态 FC。我们在模拟数据和来自人类连接组计划(HCP)数据库的基于任务的功能磁共振成像(fMRI)数据上进行了广泛的实验,在这些实验中,我们的 Geo-Net4Net 不仅实现了比其他最先进的方法更准确的变化检测结果,而且还产生了普遍存在的几何模式,为大脑功能提供了潜在的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c02/9374896/b11c29c1f3fb/HBM-43-3970-g010.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验