Suppr超能文献

一种用于删失验证、性质、应用及不同估计方法的具有修正Bagdonavičius-Nikulin拟合优度检验的新参数寿命分布

A New Parametric Life Distribution with Modified Bagdonavičius-Nikulin Goodness-of-Fit Test for Censored Validation, Properties, Applications, and Different Estimation Methods.

作者信息

Mansour Mahmoud, Rasekhi Mahdi, Ibrahim Mohamed, Aidi Khaoula, Yousof Haitham M, Abd Elrazik Enayat

机构信息

Management Information System Department, Yanbu, Taibah University, Yanbu 46421, Saudi Arabia.

Department of Statistics, Mathematics and Insurance, Benha University, Benha 13513, Egypt.

出版信息

Entropy (Basel). 2020 May 25;22(5):592. doi: 10.3390/e22050592.

Abstract

In this paper, we first study a new two parameter lifetime distribution. This distribution includes "monotone" and "non-monotone" hazard rate functions which are useful in lifetime data analysis and reliability. Some of its mathematical properties including explicit expressions for the ordinary and incomplete moments, generating function, Renyi entropy, δ-entropy, order statistics and probability weighted moments are derived. Non-Bayesian estimation methods such as the maximum likelihood, Cramer-Von-Mises, percentile estimation, and L-moments are used for estimating the model parameters. The importance and flexibility of the new distribution are illustrated by means of two applications to real data sets. Using the approach of the Bagdonavicius-Nikulin goodness-of-fit test for the right censored validation, we then propose and apply a modified chi-square goodness-of-fit test for the Burr X Weibull model. The modified goodness-of-fit statistics test is applied for the right censored real data set. Based on the censored maximum likelihood estimators on initial data, the modified goodness-of-fit test recovers the loss in information while the grouped data follows the chi-square distribution. The elements of the modified criteria tests are derived. A real data application is for validation under the uncensored scheme.

摘要

在本文中,我们首先研究一种新的双参数寿命分布。这种分布包括“单调”和“非单调”失效率函数,它们在寿命数据分析和可靠性方面很有用。推导了它的一些数学性质,包括普通矩和不完全矩的显式表达式、生成函数、雷尼熵、δ熵、顺序统计量和概率加权矩。使用非贝叶斯估计方法,如最大似然估计、克拉默 - 冯 - 米塞斯估计、百分位数估计和L矩估计来估计模型参数。通过对两个实际数据集的应用说明了新分布的重要性和灵活性。使用Bagdonavicius - Nikulin拟合优度检验方法进行右删失验证,然后我们提出并应用一种针对Burr X Weibull模型的修正卡方拟合优度检验。将修正的拟合优度统计检验应用于右删失的实际数据集。基于初始数据上的删失最大似然估计,当分组数据服从卡方分布时,修正的拟合优度检验弥补了信息损失。推导了修正准则检验的要素。一个实际数据应用是在无删失方案下进行验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0351/7517128/0f6da9468027/entropy-22-00592-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验