Suppr超能文献

用于负偏态保险索赔数据的损失规模模型:应用、使用不同方法的风险分析及统计预测。

A size-of-loss model for the negatively skewed insurance claims data: applications, risk analysis using different methods and statistical forecasting.

作者信息

Mohamed Heba Soltan, Cordeiro Gauss M, Minkah R, Yousof Haitham M, Ibrahim Mohamed

机构信息

Department of Statistics and Quantitative Methods, Faculty of Business Administration, Horus University, Damietta, Egypt.

Departamento de Estatistica, Universidade Federal de Pernambuco, Recife, Brazil.

出版信息

J Appl Stat. 2022 Sep 21;51(2):348-369. doi: 10.1080/02664763.2022.2125936. eCollection 2024.

Abstract

The future values of the expected claims are very important for the insurance companies for avoiding the big losses under uncertainty which may be produced from future claims. In this paper, we define a new size-of-loss distribution for the negatively skewed insurance claims data. Four key risk indicators are defined and analyzed under four estimation methods: maximum likelihood, ordinary least squares, weighted least squares, and Anderson Darling. The insurance claims data are modeled using many competitive models and comprehensive comparison is performed under nine statistical tests. The autoregressive model is proposed to analyze the insurance claims data and estimate the future values of the expected claims. The value-at-risk estimation and the peaks-over random threshold mean-of-order-p methodology are considered.

摘要

预期索赔的未来价值对于保险公司避免不确定性下可能由未来索赔产生的重大损失非常重要。在本文中,我们为负偏态保险索赔数据定义了一种新的损失规模分布。在最大似然法、普通最小二乘法、加权最小二乘法和安德森-达林法这四种估计方法下定义并分析了四个关键风险指标。使用多种竞争模型对保险索赔数据进行建模,并在九种统计检验下进行全面比较。提出自回归模型来分析保险索赔数据并估计预期索赔的未来价值。考虑了风险价值估计和超过随机阈值的p阶峰值均值方法。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验