Zamri Nur Ezlin, Mansor Mohd Asyraf, Mohd Kasihmuddin Mohd Shareduwan, Alway Alyaa, Mohd Jamaludin Siti Zulaikha, Alzaeemi Shehab Abdulhabib
School of Distance Education, Universiti Sains Malaysia, Penang 11800, Malaysia.
School of Mathematical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
Entropy (Basel). 2020 May 27;22(6):596. doi: 10.3390/e22060596.
Amazon.com Inc. seeks alternative ways to improve manual transactions system of granting employees resources access in the field of data science. The work constructs a modified Artificial Neural Network (ANN) by incorporating a Discrete Hopfield Neural Network (DHNN) and Clonal Selection Algorithm (CSA) with 3-Satisfiability (3-SAT) logic to initiate an Artificial Intelligence (AI) model that executes optimization tasks for industrial data. The selection of 3-SAT logic is vital in data mining to represent entries of Amazon Employees Resources Access (AERA) via information theory. The proposed model employs CSA to improve the learning phase of DHNN by capitalizing features of CSA such as hypermutation and cloning process. This resulting the formation of the proposed model, as an alternative machine learning model to identify factors that should be prioritized in the approval of employees resources applications. Subsequently, reverse analysis method (SATRA) is integrated into our proposed model to extract the relationship of AERA entries based on logical representation. The study will be presented by implementing simulated, benchmark and AERA data sets with multiple performance evaluation metrics. Based on the findings, the proposed model outperformed the other existing methods in AERA data extraction.
亚马逊公司正在寻求其他方法来改进数据科学领域中授予员工资源访问权限的手动交易系统。这项工作通过将离散霍普菲尔德神经网络(DHNN)和克隆选择算法(CSA)与3可满足性(3-SAT)逻辑相结合,构建了一个改进的人工神经网络(ANN),以启动一个人工智能(AI)模型,该模型为工业数据执行优化任务。在数据挖掘中,选择3-SAT逻辑对于通过信息论来表示亚马逊员工资源访问(AERA)的条目至关重要。所提出的模型利用CSA的超变异和克隆过程等特性来改进DHNN的学习阶段。这导致了所提出模型的形成,作为一种替代的机器学习模型,用于识别在员工资源申请批准中应优先考虑的因素。随后,将反向分析方法(SATRA)集成到我们提出的模型中,以基于逻辑表示提取AERA条目的关系。该研究将通过使用多个性能评估指标来实现模拟、基准和AERA数据集来进行展示。基于这些发现,所提出的模型在AERA数据提取方面优于其他现有方法。