Suppr超能文献

基于 Hopfield 神经网络的人工蜻蜓算法求解精确布尔 k 可满足性表示。

Artificial dragonfly algorithm in the Hopfield neural network for optimal Exact Boolean k satisfiability representation.

机构信息

College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia.

Department of Mathematics, Isa Kaita College of Education, Dutsin-Ma, Katsina State, Nigeria.

出版信息

PLoS One. 2023 Sep 25;18(9):e0286874. doi: 10.1371/journal.pone.0286874. eCollection 2023.

Abstract

This study proposes a novel hybrid computational approach that integrates the artificial dragonfly algorithm (ADA) with the Hopfield neural network (HNN) to achieve an optimal representation of the Exact Boolean kSatisfiability (EBkSAT) logical rule. The primary objective is to investigate the effectiveness and robustness of the ADA algorithm in expediting the training phase of the HNN to attain an optimized EBkSAT logic representation. To assess the performance of the proposed hybrid computational model, a specific Exact Boolean kSatisfiability problem is constructed, and simulated data sets are generated. The evaluation metrics employed include the global minimum ratio (GmR), root mean square error (RMSE), mean absolute percentage error (MAPE), and network computational time (CT) for EBkSAT representation. Comparative analyses are conducted between the results obtained from the proposed model and existing models in the literature. The findings demonstrate that the proposed hybrid model, ADA-HNN-EBkSAT, surpasses existing models in terms of accuracy and computational time. This suggests that the ADA algorithm exhibits effective compatibility with the HNN for achieving an optimal representation of the EBkSAT logical rule. These outcomes carry significant implications for addressing intricate optimization problems across diverse domains, including computer science, engineering, and business.

摘要

本研究提出了一种新颖的混合计算方法,将人工蜻蜓算法(ADA)与 Hopfield 神经网络(HNN)相结合,以实现精确布尔 k 可满足性(EBkSAT)逻辑规则的最佳表示。主要目标是研究 ADA 算法在加速 HNN 训练阶段以获得优化的 EBkSAT 逻辑表示方面的有效性和鲁棒性。为了评估所提出的混合计算模型的性能,构建了一个特定的精确布尔 k 可满足性问题,并生成了模拟数据集。所采用的评估指标包括 EBkSAT 表示的全局最小比(GmR)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)和网络计算时间(CT)。对所提出的模型与文献中现有模型的结果进行了比较分析。研究结果表明,所提出的混合模型 ADA-HNN-EBkSAT 在准确性和计算时间方面优于现有模型。这表明 ADA 算法与 HNN 有效兼容,可实现 EBkSAT 逻辑规则的最佳表示。这些结果对于解决计算机科学、工程和商业等各个领域的复杂优化问题具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52bb/10519610/81d010b2c511/pone.0286874.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验