Suppr超能文献

基于 Kolmogorov 熵的运动相关脑电事件相关去同步化和同步化的量化。

Event-related desynchronization and synchronization quantification in motor-related EEG by Kolmogorov entropy.

机构信息

Institute of Biomedical Engineering, Key Laboratory of Biomedical Information Engineering of Education Ministry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China.

出版信息

J Neural Eng. 2013 Jun;10(3):036023. doi: 10.1088/1741-2560/10/3/036023. Epub 2013 May 16.

Abstract

OBJECTIVE

Various approaches have been applied for the quantification of event-related desynchronization/synchronization (ERD/ERS) in EEG/MEG data analysis, but most of them are based on band power analysis. In this paper, we sought a novel method using a nonlinear measurement to quantify the ERD/ERS time course of motor-related EEG.

APPROACH

We applied Kolmogorov entropy to quantify the ERD/ERS time course of motor-related EEG in relation to hand movement imagination and execution for the first time. To further test the validity of the Kolmogorov entropy measure, we tested it on five human subjects for feature extraction to classify the left and right hand motor tasks.

MAIN RESULTS

The results show that the relative increase and decrease of Kolmogorov entropy indicates the ERD and ERS respectively. An average classification accuracy of 87.3% was obtained for five subjects.

SIGNIFICANCE

The results prove that Kolmogorov entropy can effectively quantify the dynamic process of event-related EEG, and it also provides a novel method of classifying motor imagery tasks from scalp EEG by Kolmogorov entropy measurement with promising classification accuracy.

摘要

目的

在 EEG/MEG 数据分析中,已经应用了各种方法来量化事件相关去同步/同步(ERD/ERS),但大多数方法都是基于频带功率分析的。在本文中,我们寻求了一种使用非线性测量来量化与手部运动想象和执行相关的 EEG 的 ERD/ERS 时程的新方法。

方法

我们首次应用 Kolmogorov 熵来量化与手部运动想象和执行相关的 EEG 的 ERD/ERS 时程。为了进一步测试 Kolmogorov 熵度量的有效性,我们在五个受试者上进行了特征提取,以分类左手和右手运动任务。

主要结果

结果表明,Kolmogorov 熵的相对增加和减少分别表示 ERD 和 ERS。五个受试者的平均分类准确率为 87.3%。

意义

结果证明,Kolmogorov 熵可以有效地量化事件相关 EEG 的动态过程,并且它还通过 Kolmogorov 熵测量提供了一种从头皮 EEG 分类运动想象任务的新方法,具有有前景的分类准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验