Suppr超能文献

在运动想象分类中使用时频原子增强多实例表示

Enhanced Multiple Instance Representation Using Time-Frequency Atoms in Motor Imagery Classification.

作者信息

Collazos-Huertas Diego, Caicedo-Acosta Julian, Castaño-Duque German A, Acosta-Medina Carlos D

机构信息

Signal Processing and Recognition Group, Manizales, Colombia.

Cultura de la Calidad en la Educación Research Group, Universidad Nacional de Colombia, Manizales, Colombia.

出版信息

Front Neurosci. 2020 Feb 25;14:155. doi: 10.3389/fnins.2020.00155. eCollection 2020.

Abstract

Selection of the time-window mainly affects the effectiveness of piecewise feature extraction procedures. We present an enhanced bag-of-patterns representation that allows capturing the higher-level structures of brain dynamics within a wide window range. So, we introduce augmented instance representations with extended window lengths for the short-time Common Spatial Pattern algorithm. Based on multiple-instance learning, the relevant bag-of-patterns are selected by a sparse regression to feed a bag classifier. The proposed higher-level structure representation promotes two contributions: (i) accuracy improvement of bi-conditional tasks, (ii) A better understanding of dynamic brain behavior through the learned sparse regression fits. Using a support vector machine classifier, the achieved performance on a public motor imagery dataset (left-hand and right-hand tasks) shows that the proposed framework performs very competitive results, providing robustness to the time variation of electroencephalography recordings and favoring the class separability.

摘要

时间窗口的选择主要影响分段特征提取过程的有效性。我们提出了一种增强的模式袋表示法,它能够在较宽的窗口范围内捕捉脑动力学的高级结构。因此,我们为短时公共空间模式算法引入了具有扩展窗口长度的增强实例表示。基于多实例学习,通过稀疏回归选择相关的模式袋来为袋分类器提供输入。所提出的高级结构表示法有两个贡献:(i)双条件任务的准确率提高,(ii)通过学习到的稀疏回归拟合更好地理解动态脑行为。使用支持向量机分类器,在一个公共运动想象数据集(左手和右手任务)上取得的性能表明,所提出的框架表现出极具竞争力的结果,对脑电图记录的时间变化具有鲁棒性,并有利于类别可分性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25d5/7052488/830a1a6c8575/fnins-14-00155-g0001.jpg

相似文献

1
Enhanced Multiple Instance Representation Using Time-Frequency Atoms in Motor Imagery Classification.
Front Neurosci. 2020 Feb 25;14:155. doi: 10.3389/fnins.2020.00155. eCollection 2020.
2
Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI.
IEEE Trans Cybern. 2019 Sep;49(9):3322-3332. doi: 10.1109/TCYB.2018.2841847. Epub 2018 Jun 14.
3
A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition.
Med Biol Eng Comput. 2017 Sep;55(9):1589-1603. doi: 10.1007/s11517-017-1622-1. Epub 2017 Feb 4.
5
Temporal Combination Pattern Optimization Based on Feature Selection Method for Motor Imagery BCIs.
Front Hum Neurosci. 2020 Jun 30;14:231. doi: 10.3389/fnhum.2020.00231. eCollection 2020.
6
Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.
J Neurosci Methods. 2015 Nov 30;255:85-91. doi: 10.1016/j.jneumeth.2015.08.004. Epub 2015 Aug 13.
7
Sparse Representation-Based Extreme Learning Machine for Motor Imagery EEG Classification.
Comput Intell Neurosci. 2018 Oct 28;2018:9593682. doi: 10.1155/2018/9593682. eCollection 2018.
8
Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals.
Comput Biol Med. 2019 Apr;107:118-126. doi: 10.1016/j.compbiomed.2019.02.009. Epub 2019 Feb 19.
9
Class discrepancy-guided sub-band filter-based common spatial pattern for motor imagery classification.
J Neurosci Methods. 2019 Jul 15;323:98-107. doi: 10.1016/j.jneumeth.2019.05.011. Epub 2019 May 26.
10
Sparse Bayesian Learning for Obtaining Sparsity of EEG Frequency Bands Based Feature Vectors in Motor Imagery Classification.
Int J Neural Syst. 2017 Mar;27(2):1650032. doi: 10.1142/S0129065716500325. Epub 2016 Apr 11.

引用本文的文献

1
A Novel OpenBCI Framework for EEG-Based Neurophysiological Experiments.
Sensors (Basel). 2023 Apr 6;23(7):3763. doi: 10.3390/s23073763.
2
KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification.
Diagnostics (Basel). 2023 Mar 16;13(6):1122. doi: 10.3390/diagnostics13061122.
3
Suppressing of Power Line Artifact From Electroencephalogram Measurements Using Sparsity in Frequency Domain.
Front Neurosci. 2021 Oct 28;15:780373. doi: 10.3389/fnins.2021.780373. eCollection 2021.
5
Optimization of Task Allocation for Collaborative Brain-Computer Interface Based on Motor Imagery.
Front Neurosci. 2021 Jul 2;15:683784. doi: 10.3389/fnins.2021.683784. eCollection 2021.

本文引用的文献

1
Enhance decoding of pre-movement EEG patterns for brain-computer interfaces.
J Neural Eng. 2020 Jan 24;17(1):016033. doi: 10.1088/1741-2552/ab598f.
2
An Optimized Channel Selection Method Based on Multifrequency CSP-Rank for Motor Imagery-Based BCI System.
Comput Intell Neurosci. 2019 May 13;2019:8068357. doi: 10.1155/2019/8068357. eCollection 2019.
3
Benefits of Motor Imagery for Human Space Flight: A Brief Review of Current Knowledge and Future Applications.
Front Physiol. 2019 Apr 11;10:396. doi: 10.3389/fphys.2019.00396. eCollection 2019.
4
EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges.
Sensors (Basel). 2019 Mar 22;19(6):1423. doi: 10.3390/s19061423.
5
Motor imagery ability assessments in four disciplines: protocol for a systematic review.
BMJ Open. 2018 Dec 14;8(12):e023439. doi: 10.1136/bmjopen-2018-023439.
6
Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI.
IEEE Trans Cybern. 2019 Sep;49(9):3322-3332. doi: 10.1109/TCYB.2018.2841847. Epub 2018 Jun 14.
7
A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition.
Med Biol Eng Comput. 2017 Sep;55(9):1589-1603. doi: 10.1007/s11517-017-1622-1. Epub 2017 Feb 4.
8
Improving the discrimination of hand motor imagery via virtual reality based visual guidance.
Comput Methods Programs Biomed. 2016 Aug;132:63-74. doi: 10.1016/j.cmpb.2016.04.023. Epub 2016 Apr 27.
9
Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.
J Neurosci Methods. 2015 Nov 30;255:85-91. doi: 10.1016/j.jneumeth.2015.08.004. Epub 2015 Aug 13.
10
Sparse representation-based classification scheme for motor imagery-based brain-computer interface systems.
J Neural Eng. 2012 Oct;9(5):056002. doi: 10.1088/1741-2560/9/5/056002. Epub 2012 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验