Collazos-Huertas Diego, Caicedo-Acosta Julian, Castaño-Duque German A, Acosta-Medina Carlos D
Signal Processing and Recognition Group, Manizales, Colombia.
Cultura de la Calidad en la Educación Research Group, Universidad Nacional de Colombia, Manizales, Colombia.
Front Neurosci. 2020 Feb 25;14:155. doi: 10.3389/fnins.2020.00155. eCollection 2020.
Selection of the time-window mainly affects the effectiveness of piecewise feature extraction procedures. We present an enhanced bag-of-patterns representation that allows capturing the higher-level structures of brain dynamics within a wide window range. So, we introduce augmented instance representations with extended window lengths for the short-time Common Spatial Pattern algorithm. Based on multiple-instance learning, the relevant bag-of-patterns are selected by a sparse regression to feed a bag classifier. The proposed higher-level structure representation promotes two contributions: (i) accuracy improvement of bi-conditional tasks, (ii) A better understanding of dynamic brain behavior through the learned sparse regression fits. Using a support vector machine classifier, the achieved performance on a public motor imagery dataset (left-hand and right-hand tasks) shows that the proposed framework performs very competitive results, providing robustness to the time variation of electroencephalography recordings and favoring the class separability.
时间窗口的选择主要影响分段特征提取过程的有效性。我们提出了一种增强的模式袋表示法,它能够在较宽的窗口范围内捕捉脑动力学的高级结构。因此,我们为短时公共空间模式算法引入了具有扩展窗口长度的增强实例表示。基于多实例学习,通过稀疏回归选择相关的模式袋来为袋分类器提供输入。所提出的高级结构表示法有两个贡献:(i)双条件任务的准确率提高,(ii)通过学习到的稀疏回归拟合更好地理解动态脑行为。使用支持向量机分类器,在一个公共运动想象数据集(左手和右手任务)上取得的性能表明,所提出的框架表现出极具竞争力的结果,对脑电图记录的时间变化具有鲁棒性,并有利于类别可分性。