Suppr超能文献

基于图论的电信行业社交网络分析与客户流失预测

Social Network Analysis and Churn Prediction in Telecommunications Using Graph Theory.

作者信息

Kostić Stefan M, Simić Mirjana I, Kostić Miroljub V

机构信息

School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia.

Statistical Office of the Republic of Serbia, 11000 Belgrade, Serbia.

出版信息

Entropy (Basel). 2020 Jul 9;22(7):753. doi: 10.3390/e22070753.

Abstract

Due to telecommunications market saturation, it is very important for telco operators to always have fresh insights into their customer's dynamics. In that regard, social network analytics and its application with graph theory can be very useful. In this paper we analyze a social network that is represented by a large telco network graph and perform clustering of its nodes by studying a broad set of metrics, e.g., node in/out degree, first and second order influence, eigenvector, authority and hub values. This paper demonstrates that it is possible to identify some important nodes in our social network (graph) that are vital regarding churn prediction. We show that if such a node leaves a monitored telco operator, customers that frequently interact with that specific node will be more prone to leave the monitored telco operator network as well; thus, by analyzing existing churn and previous call patterns, we proactively predict new customers that will probably churn. The churn prediction results are quantified by using top decile lift metrics. The proposed method is general enough to be readily adopted in any field where homophilic or friendship connections can be assumed as a potential churn driver.

摘要

由于电信市场饱和,电信运营商始终对客户动态保持敏锐洞察非常重要。在这方面,社交网络分析及其在图论中的应用可能非常有用。在本文中,我们分析了一个由大型电信网络图表示的社交网络,并通过研究一系列广泛的指标(例如节点入度/出度、一阶和二阶影响力、特征向量、权威值和枢纽值)对其节点进行聚类。本文表明,在我们的社交网络(图)中识别出一些对于客户流失预测至关重要的重要节点是可能的。我们表明,如果这样一个节点离开受监控的电信运营商,经常与该特定节点交互的客户也将更倾向于离开受监控的电信运营商网络;因此,通过分析现有的客户流失情况和以前的通话模式,我们可以主动预测可能会流失的新客户。客户流失预测结果通过使用十分位数提升指标进行量化。所提出的方法具有足够的通用性,可以很容易地应用于任何可以假设同质性或友谊连接为潜在客户流失驱动因素的领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f0/7517299/6b6db2d754d8/entropy-22-00753-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验