Momani Shaher, Ibrahim Rabha W, Hadid Samir B
Department of Mathematics and Sciences, College of Humanities and Sciences, Ajman University, Ajman 346, UAE.
Department of Mathematics, Faculty of Science, University of Jordan, Amman 11942, Jordan.
Entropy (Basel). 2020 Jul 14;22(7):769. doi: 10.3390/e22070769.
This investigation deals with a discrete dynamic system of susceptible-infected-susceptible epidemic (SISE) using the Tsallis entropy. We investigate the positive and maximal solutions of the system. Stability and equilibrium are studied. Moreover, based on the Tsallis entropy, we shall formulate a new design for the basic reproductive ratio. Finally, we apply the results on live data regarding COVID-19.
本研究利用Tsallis熵处理一个易感-感染-易感(SISE)离散动态系统。我们研究了该系统的正解和最大解。对稳定性和平衡点进行了研究。此外,基于Tsallis熵,我们将制定一个基本再生数的新设计。最后,我们将结果应用于关于COVID-19的实时数据。