Suppr超能文献

基于熵的生态推理问题解决方案:一种复合估计器。

Entropy-Based Solutions for Ecological Inference Problems: A Composite Estimator.

作者信息

Bernardini Papalia Rosa, Fernandez Vazquez Esteban

机构信息

Department of Statistical Sciences, University of Bologna, 40126 Bologna, Italy.

REGIOlab and Department of Applied Economics, University of Oviedo, 33003 Oviedo, Spain.

出版信息

Entropy (Basel). 2020 Jul 17;22(7):781. doi: 10.3390/e22070781.

Abstract

Information-based estimation techniques are becoming more popular in the field of Ecological Inference. Within this branch of estimation techniques, two alternative approaches can be pointed out. The first one is the Generalized Maximum Entropy (GME) approach based on a matrix adjustment problem where the only observable information is given by the margins of the target matrix. An alternative approach is based on a distributionally weighted regression (DWR) equation. These two approaches have been studied so far as completely different streams, even when there are clear connections between them. In this paper we present these connections explicitly. More specifically, we show that under certain conditions the generalized cross-entropy (GCE) solution for a matrix adjustment problem and the GME estimator of a DWR equation differ only in terms of the a priori information considered. Then, we move a step forward and propose a composite estimator that combines the two priors considered in both approaches. Finally, we present a numerical experiment and an empirical application based on Spanish data for the 2010 year.

摘要

基于信息的估计技术在生态推断领域正变得越来越流行。在这一估计技术分支中,可以指出两种替代方法。第一种是基于矩阵调整问题的广义最大熵(GME)方法,其中唯一可观测的信息由目标矩阵的边际给出。另一种替代方法基于分布加权回归(DWR)方程。到目前为止,这两种方法一直被作为完全不同的流派进行研究,即使它们之间存在明显的联系。在本文中,我们明确展示了这些联系。更具体地说,我们表明在某些条件下,矩阵调整问题的广义交叉熵(GCE)解和DWR方程的GME估计量仅在所考虑的先验信息方面有所不同。然后,我们更进一步,提出一种组合估计量,它结合了两种方法中所考虑的两个先验。最后,我们基于2010年西班牙的数据给出了一个数值实验和一个实证应用。

相似文献

2
Information estimators for weighted observations.加权观测的信息估计量。
Neural Netw. 2013 Oct;46:260-75. doi: 10.1016/j.neunet.2013.06.005. Epub 2013 Jun 24.

引用本文的文献

1
Quantifying random variability in decision-making in pediatric cardiac surgery.量化小儿心脏手术决策中的随机变异性。
JTCVS Open. 2025 Mar 5;25:382-392. doi: 10.1016/j.xjon.2025.02.014. eCollection 2025 Jun.
2
The Statistical Foundations of Entropy.熵的统计基础
Entropy (Basel). 2021 Oct 19;23(10):1367. doi: 10.3390/e23101367.

本文引用的文献

1
Ecological inference.生态推断
Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10578-81. doi: 10.1073/pnas.96.19.10578.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验