Suppr超能文献

从少量样本推断大型系统的属性。

Inferring a Property of a Large System from a Small Number of Samples.

作者信息

Hernández Damián G, Samengo Inés

机构信息

Department of Medical Physics, Centro Atómico Bariloche and Instituto Balseiro, San Carlos de Bariloche 8400, Argentina.

出版信息

Entropy (Basel). 2022 Jan 14;24(1):125. doi: 10.3390/e24010125.

Abstract

Inferring the value of a property of a large stochastic system is a difficult task when the number of samples is insufficient to reliably estimate the probability distribution. The Bayesian estimator of the property of interest requires the knowledge of the prior distribution, and in many situations, it is not clear which prior should be used. Several estimators have been developed so far in which the proposed prior us individually tailored for each property of interest; such is the case, for example, for the entropy, the amount of mutual information, or the correlation between pairs of variables. In this paper, we propose a general framework to select priors that is valid for arbitrary properties. We first demonstrate that only certain aspects of the prior distribution actually affect the inference process. We then expand the sought prior as a linear combination of a one-dimensional family of indexed priors, each of which is obtained through a maximum entropy approach with constrained mean values of the property under study. In many cases of interest, only one or very few components of the expansion turn out to contribute to the Bayesian estimator, so it is often valid to only keep a single component. The relevant component is selected by the data, so no handcrafted priors are required. We test the performance of this approximation with a few paradigmatic examples and show that it performs well in comparison to the ad-hoc methods previously proposed in the literature. Our method highlights the connection between Bayesian inference and equilibrium statistical mechanics, since the most relevant component of the expansion can be argued to be that with the right temperature.

摘要

当样本数量不足以可靠地估计概率分布时,推断大型随机系统的某个属性值是一项艰巨的任务。感兴趣属性的贝叶斯估计器需要先验分布的知识,而在许多情况下,不清楚应该使用哪种先验。到目前为止,已经开发了几种估计器,其中所提出的先验是针对每个感兴趣的属性单独定制的;例如,对于熵、互信息量或变量对之间的相关性就是这种情况。在本文中,我们提出了一个选择先验的通用框架,该框架对任意属性都是有效的。我们首先证明,实际上只有先验分布的某些方面会影响推理过程。然后,我们将所求的先验展开为一族带索引的一维先验的线性组合,其中每个先验都是通过对所研究属性的均值进行约束的最大熵方法获得的。在许多感兴趣的情况下,展开式中只有一个或很少的几个分量对贝叶斯估计器有贡献,所以通常只保留单个分量是有效的。相关分量由数据选择,因此不需要手工制作先验。我们用几个典型例子测试了这种近似的性能,结果表明与文献中先前提出的特设方法相比,它表现良好。我们的方法突出了贝叶斯推理与平衡统计力学之间的联系,因为展开式中最相关的分量可以说是具有合适温度的那个分量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde2/8775033/31f7284df6c8/entropy-24-00125-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验