Suppr超能文献

迈向更现实的引用模型:研究团队规模的关键作用。

Towards a More Realistic Citation Model: The Key Role of Research Team Sizes.

作者信息

Milojević Staša

机构信息

Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN 47408, USA.

出版信息

Entropy (Basel). 2020 Aug 10;22(8):875. doi: 10.3390/e22080875.

Abstract

We propose a new citation model which builds on the existing models that explicitly or implicitly include "direct" and "indirect" (learning about a cited paper's existence from references in another paper) citation mechanisms. Our model departs from the usual, unrealistic assumption of uniform probability of direct citation, in which initial differences in citation arise purely randomly. Instead, we demonstrate that a two-mechanism model in which the probability of direct citation is proportional to the number of authors on a paper (team size) is able to reproduce the empirical citation distributions of articles published in the field of astronomy remarkably well, and at different points in time. Interpretation of our model is that the intrinsic citation capacity, and hence the initial visibility of a paper, will be enhanced when more people are intimately familiar with some work, favoring papers from larger teams. While the intrinsic citation capacity cannot depend only on the team size, our model demonstrates that it must be to some degree correlated with it, and distributed in a similar way, i.e., having a power-law tail. Consequently, our team-size model qualitatively explains the existence of a correlation between the number of citations and the number of authors on a paper.

摘要

我们提出了一种新的引用模型,该模型建立在现有的模型基础之上,这些现有模型明确或隐含地包含了“直接”和“间接”(从另一篇论文的参考文献中了解被引用论文的存在)引用机制。我们的模型摒弃了通常那种直接引用概率均匀分布的不切实际假设,在这种假设中,引用的初始差异纯粹是随机产生的。相反,我们证明了一种双机制模型,即直接引用概率与论文作者数量(团队规模)成正比,能够非常好地重现天文学领域不同时期发表文章的实证引用分布。我们模型的解释是,当有更多人深入熟悉某项工作时,论文的内在引用能力以及初始可见度将会提高,这有利于来自较大团队的论文。虽然内在引用能力不能仅取决于团队规模,但我们的模型表明它必须在某种程度上与之相关,并且以类似的方式分布,即具有幂律尾部。因此,我们的团队规模模型定性地解释了论文引用次数与作者数量之间相关性的存在。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5236/7517479/ca7ad5bc07c3/entropy-22-00875-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验