Khrennikov Andrei, Oleschko Klaudia
International Center for Mathematical Modeling in Physics and Cognitive Sciences, Linnaeus University, SE-351 95 Växjö, Sweden.
Centro de Geociencias, Campus UNAM Juriquilla, Universidad Nacional Autonoma de Mexico (UNAM), Blvd. Juriquilla 3001, 76230 Queretaro, Mexico.
Entropy (Basel). 2020 Aug 25;22(9):931. doi: 10.3390/e22090931.
We present a mathematical model of disease (say a virus) spread that takes into account the hierarchic structure of social clusters in a population. It describes the dependence of epidemic's dynamics on the strength of barriers between clusters. These barriers are established by authorities as preventative measures; partially they are based on existing socio-economic conditions. We applied the theory of random walk on the energy landscapes represented by ultrametric spaces (having tree-like geometry). This is a part of statistical physics with applications to spin glasses and protein dynamics. To move from one social cluster (valley) to another, a virus (its carrier) should cross a social barrier between them. The magnitude of a barrier depends on the number of social hierarchy levels composing this barrier. Infection spreads rather easily inside a social cluster (say a working collective), but jumps to other clusters are constrained by social barriers. The model implies the power law, 1-t-a, for approaching herd immunity, where the parameter is proportional to inverse of one-step barrier Δ. We consider linearly increasing barriers (with respect to hierarchy), i.e., the -step barrier Δm=mΔ. We also introduce a quantity characterizing the process of infection distribution from one level of social hierarchy to the nearest lower levels, spreading entropy E. The parameter is proportional to E.
我们提出了一种疾病(如病毒)传播的数学模型,该模型考虑了人群中社会群体的层次结构。它描述了流行病动态对群体间屏障强度的依赖性。这些屏障由当局作为预防措施设立;部分基于现有的社会经济状况。我们将随机游走理论应用于由超度量空间(具有树状几何结构)表示的能量景观。这是统计物理学的一部分,应用于自旋玻璃和蛋白质动力学。为了从一个社会群体(山谷)移动到另一个群体,病毒(其携带者)需要跨越它们之间的社会屏障。屏障的大小取决于构成该屏障的社会层次级别数量。感染在一个社会群体(如一个工作集体)内部相当容易传播,但传播到其他群体则受到社会屏障的限制。该模型意味着在接近群体免疫时遵循幂律1 - t - a,其中参数与一步屏障Δ的倒数成正比。我们考虑线性增加的屏障(相对于层次结构),即第m步屏障Δm = mΔ。我们还引入了一个量来表征感染从一个社会层次级别传播到最近较低级别过程的特征,即传播熵E。参数与E成正比。