Suppr超能文献

用于肿瘤异质性图谱研究的非线性图像配准与像素分类流程

Nonlinear Image Registration and Pixel Classification Pipeline for the Study of Tumor Heterogeneity Maps.

作者信息

Nicolás-Sáenz Laura, Guerrero-Aspizua Sara, Pascau Javier, Muñoz-Barrutia Arrate

机构信息

Departamento de Bioingenieria e Ingenieria Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganes, Spain.

Centre for Biomedical Network Research on Rare Diseases (CIBERER), U714, 28029 Madrid, Spain.

出版信息

Entropy (Basel). 2020 Aug 28;22(9):946. doi: 10.3390/e22090946.

Abstract

We present a novel method to assess the variations in protein expression and spatial heterogeneity of tumor biopsies with application in computational pathology. This was done using different antigen stains for each tissue section and proceeding with a complex image registration followed by a final step of color segmentation to detect the exact location of the proteins of interest. For proper assessment, the registration needs to be highly accurate for the careful study of the antigen patterns. However, accurate registration of histopathological images comes with three main problems: the high amount of artifacts due to the complex biopsy preparation, the size of the images, and the complexity of the local morphology. Our method manages to achieve an accurate registration of the tissue cuts and segmentation of the positive antigen areas.

摘要

我们提出了一种新颖的方法,用于评估肿瘤活检组织中蛋白质表达的变化和空间异质性,并将其应用于计算病理学。这是通过对每个组织切片使用不同的抗原染色,然后进行复杂的图像配准,最后进行颜色分割步骤来检测感兴趣蛋白质的确切位置来实现的。为了进行准确的评估,配准需要高度精确,以便仔细研究抗原模式。然而,组织病理学图像的准确配准存在三个主要问题:由于活检制备复杂导致的大量伪影、图像大小以及局部形态的复杂性。我们的方法成功实现了组织切片的准确配准和阳性抗原区域的分割。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab5/7597219/64b6e00508f3/entropy-22-00946-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验