Prestipino Santi, Giaquinta Paolo V
Dipartimento di Scienze Matematiche ed Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
Entropy (Basel). 2020 Sep 13;22(9):1024. doi: 10.3390/e22091024.
As first shown by H. S. Green in 1952, the entropy of a classical fluid of identical particles can be written as a sum of many-particle contributions, each of them being a distinctive functional of all spatial distribution functions up to a given order. By revisiting the combinatorial derivation of the entropy formula, we argue that a similar correlation expansion holds for the entropy of a crystalline system. We discuss how one- and two-body entropies scale with the size of the crystal, and provide fresh numerical data to check the expectation, grounded in theoretical arguments, that both entropies are extensive quantities.
正如H. S. 格林在1952年首次表明的那样,相同粒子的经典流体的熵可以写成多粒子贡献的总和,其中每一项都是所有空间分布函数到给定阶数的独特泛函。通过重新审视熵公式的组合推导,我们认为晶体系统的熵也有类似的关联展开。我们讨论了一体熵和二体熵如何随晶体大小缩放,并提供了新的数值数据来检验基于理论论证的预期,即这两种熵都是广延量。