Schön Johann Christian
Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany.
Entropy (Basel). 2020 Sep 23;22(10):1066. doi: 10.3390/e22101066.
Nano-size machines are moving from only being topics of basic research to becoming elements in the toolbox of engineers, and thus the issue of optimally controlling their work cycles becomes important. Here, we investigate hydrogen atom-like systems as working fluids in thermodynamic engines and their optimal control in minimizing entropy or excess heat production in finite-time processes. The electronic properties of the hydrogen atom-like system are controlled by a parameter κ reflecting changes in, e.g., the effective dielectric constant of the medium where the system is embedded. Several thermodynamic cycles consisting of combinations of iso-κ, isothermal, and adiabatic branches are studied, and a possible a-thermal cycle is discussed. Solving the optimal control problem, we show that the minimal thermodynamic length criterion of optimality for finite-time processes also applies to these cycles for general statistical mechanical systems that can be controlled by a parameter κ, and we derive an appropriate metric in probability distribution space. We show how the general formulas we have obtained for the thermodynamic length are simplified for the case of the hydrogen atom-like system, and compute the optimal distribution of process times for a two-state approximation of the hydrogen atom-like system.
纳米尺寸的机器正从仅作为基础研究的主题转变为工程师工具箱中的元件,因此,优化控制其工作循环的问题变得至关重要。在此,我们研究类氢原子系统作为热力发动机中的工作流体,以及在有限时间过程中使熵或多余热量产生最小化的最优控制。类氢原子系统的电子性质由参数κ控制,该参数反映了例如系统所处介质的有效介电常数的变化。研究了由等κ、等温及绝热分支组合而成的几个热力循环,并讨论了一种可能的无热循环。通过解决最优控制问题,我们表明有限时间过程最优性的最小热力学长度准则也适用于这些可由参数κ控制的一般统计力学系统的循环,并且我们在概率分布空间中推导了一个合适的度量。我们展示了对于类氢原子系统的情况,我们所得到的热力学长度的一般公式是如何简化的,并计算了类氢原子系统两态近似下工艺时间的最优分布。