Suppr超能文献

通过定时起立行走测试加速计数据,利用改进的排列熵估计社区老年人的姿势稳定性。

Estimating Postural Stability Using Improved Permutation Entropy via TUG Accelerometer Data for Community-Dwelling Elderly People.

作者信息

Lee Chia-Hsuan, Chen Shih-Hai, Jiang Bernard C, Sun Tien-Lung

机构信息

Department of Industrial Management, National Taiwan University of Science and Technology, Taipei 106, Taiwan.

Department of Industrial Engineering and Management, Yuan Ze University, Taoyuan 320, Taiwan.

出版信息

Entropy (Basel). 2020 Sep 29;22(10):1097. doi: 10.3390/e22101097.

Abstract

To develop an effective fall prevention program, clinicians must first identify the elderly people at risk of falling and then take the most appropriate interventions to reduce or eliminate preventable falls. Employing feature selection to establish effective decision making can thus assist in the identification of a patient's fall risk from limited data. This work therefore aims to supplement professional timed up and go assessment methods using sensor technology, entropy analysis, and statistical analysis. The results showed the different approach of applying logistic regression analysis to the inertial data on a fall-risk scale to allow medical practitioners to predict for high-risk patients. Logistic regression was also used to automatically select feature values and clinical judgment methods to explore the differences in decision making. We also calculate the area under the receiver-operating characteristic curve (AUC). Results indicated that permutation entropy and statistical features provided the best AUC values (all above 0.9), and false positives were avoided. Additionally, the weighted-permutation entropy/statistical features test has a relatively good agreement rate with the short-form Berg balance scale when classifying patients as being at risk. Therefore, the proposed methodology can provide decision-makers with a more accurate way to classify fall risk in elderly people.

摘要

为制定有效的跌倒预防计划,临床医生必须首先识别有跌倒风险的老年人,然后采取最适当的干预措施以减少或消除可预防的跌倒。利用特征选择来建立有效的决策可以帮助从有限的数据中识别患者的跌倒风险。因此,这项工作旨在使用传感器技术、熵分析和统计分析来补充专业的计时起立行走评估方法。结果显示了将逻辑回归分析应用于跌倒风险量表上的惯性数据的不同方法,以使医生能够预测高风险患者。逻辑回归还用于自动选择特征值和临床判断方法,以探索决策差异。我们还计算了受试者工作特征曲线(AUC)下的面积。结果表明,排列熵和统计特征提供了最佳的AUC值(均高于0.9),并避免了假阳性。此外,在将患者分类为有风险时,加权排列熵/统计特征测试与简短伯格平衡量表具有相对较好的一致率。因此,所提出的方法可以为决策者提供一种更准确的方法来对老年人的跌倒风险进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a490/7597195/74161c19f0cc/entropy-22-01097-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验