Duan Xintao, Liu Nao, Gou Mengxiao, Wang Wenxin, Qin Chuan
College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China.
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
Entropy (Basel). 2020 Oct 8;22(10):1140. doi: 10.3390/e22101140.
Image-to-image steganography is hiding one image in another image. However, hiding two secret images into one carrier image is a challenge today. The application of image steganography based on deep learning in real-life is relatively rare. In this paper, a new Steganography Convolution Neural Network (SteganoCNN) model is proposed, which solves the problem of two images embedded in a carrier image and can effectively reconstruct two secret images. SteganoCNN has two modules, an encoding network, and a decoding network, whereas the decoding network includes two extraction networks. First, the entire network is trained end-to-end, the encoding network automatically embeds the secret image into the carrier image, and the decoding network is used to reconstruct two different secret images. The experimental results show that the proposed steganography scheme has a maximum image payload capacity of 47.92 bits per pixel, and at the same time, it can effectively avoid the detection of steganalysis tools while keeping the stego-image undistorted. Meanwhile, StegaoCNN has good generalization capabilities and can realize the steganography of different data types, such as remote sensing images and aerial images.
图像到图像的隐写术是将一幅图像隐藏在另一幅图像中。然而,将两幅秘密图像隐藏到一幅载体图像中在当今是一项挑战。基于深度学习的图像隐写术在现实生活中的应用相对较少。本文提出了一种新的隐写卷积神经网络(SteganoCNN)模型,该模型解决了将两幅图像嵌入到一幅载体图像中的问题,并且能够有效地重建两幅秘密图像。SteganoCNN有两个模块,一个编码网络和一个解码网络,而解码网络包括两个提取网络。首先,对整个网络进行端到端训练,编码网络自动将秘密图像嵌入到载体图像中,解码网络用于重建两幅不同的秘密图像。实验结果表明,所提出的隐写术方案具有每像素47.92比特的最大图像有效载荷容量,同时,在保持隐写图像不失真的情况下,它能够有效地避免被隐写分析工具检测到。此外,StegaoCNN具有良好的泛化能力,并且能够实现不同数据类型(如遥感图像和航空图像)的隐写术。