IEEE Trans Med Imaging. 2018 Dec;37(12):2663-2674. doi: 10.1109/TMI.2018.2845918. Epub 2018 Jun 11.
Liver cancer is one of the leading causes of cancer death. To assist doctors in hepatocellular carcinoma diagnosis and treatment planning, an accurate and automatic liver and tumor segmentation method is highly demanded in the clinical practice. Recently, fully convolutional neural networks (FCNs), including 2-D and 3-D FCNs, serve as the backbone in many volumetric image segmentation. However, 2-D convolutions cannot fully leverage the spatial information along the third dimension while 3-D convolutions suffer from high computational cost and GPU memory consumption. To address these issues, we propose a novel hybrid densely connected UNet (H-DenseUNet), which consists of a 2-D DenseUNet for efficiently extracting intra-slice features and a 3-D counterpart for hierarchically aggregating volumetric contexts under the spirit of the auto-context algorithm for liver and tumor segmentation. We formulate the learning process of the H-DenseUNet in an end-to-end manner, where the intra-slice representations and inter-slice features can be jointly optimized through a hybrid feature fusion layer. We extensively evaluated our method on the data set of the MICCAI 2017 Liver Tumor Segmentation Challenge and 3DIRCADb data set. Our method outperformed other state-of-the-arts on the segmentation results of tumors and achieved very competitive performance for liver segmentation even with a single model.
肝癌是癌症死亡的主要原因之一。为了帮助医生进行肝细胞癌诊断和治疗计划,临床实践中非常需要一种准确和自动的肝脏和肿瘤分割方法。最近,全卷积神经网络(FCNs),包括 2-D 和 3-D FCNs,作为许多容积图像分割的骨干网络。然而,2-D 卷积不能充分利用沿第三维的空间信息,而 3-D 卷积则受到高计算成本和 GPU 内存消耗的影响。为了解决这些问题,我们提出了一种新的混合密集连接 U-Net(H-DenseUNet),它由一个 2-D DenseUNet 组成,用于高效提取切片内特征,以及一个 3-D 对应物,用于在自动上下文算法的精神下分层聚合体积上下文,用于肝脏和肿瘤分割。我们以端到端的方式对 H-DenseUNet 的学习过程进行了公式化,其中通过混合特征融合层可以联合优化切片内表示和切片间特征。我们在 MICCAI 2017 肝脏肿瘤分割挑战赛数据集和 3DIRCADb 数据集上对我们的方法进行了广泛评估。我们的方法在肿瘤分割结果上优于其他最新技术,即使使用单个模型,在肝脏分割方面也具有非常有竞争力的性能。