文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基因增强与编辑以改善针对实体瘤的T细胞受体工程化T细胞疗法

Gene Augmentation and Editing to Improve TCR Engineered T Cell Therapy against Solid Tumors.

作者信息

Lo Presti Vania, Buitenwerf Frank, van Til Niek P, Nierkens Stefan

机构信息

Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.

AVROBIO, Cambridge, MA 02139, USA.

出版信息

Vaccines (Basel). 2020 Dec 3;8(4):733. doi: 10.3390/vaccines8040733.


DOI:10.3390/vaccines8040733
PMID:33287413
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7761868/
Abstract

Recent developments in gene engineering technologies have drastically improved the therapeutic treatment options for cancer patients. The use of effective chimeric antigen receptor T (CAR-T) cells and recombinant T cell receptor engineered T (rTCR-T) cells has entered the clinic for treatment of hematological malignancies with promising results. However, further fine-tuning, to improve functionality and safety, is necessary to apply these strategies for the treatment of solid tumors. The immunosuppressive microenvironment, the surrounding stroma, and the tumor heterogeneity often results in poor T cell reactivity, functionality, and a diminished infiltration rates, hampering the efficacy of the treatment. The focus of this review is on recent advances in rTCR-T cell therapy, to improve both functionality and safety, for potential treatment of solid tumors and provides an overview of ongoing clinical trials. Besides selection of the appropriate tumor associated antigen, efficient delivery of an optimized recombinant TCR transgene into the T cells, in combination with gene editing techniques eliminating the endogenous TCR expression and disrupting specific inhibitory pathways could improve adoptively transferred T cells. Armoring the rTCR-T cells with specific cytokines and/or chemokines and their receptors, or targeting the tumor stroma, can increase the infiltration rate of the immune cells within the solid tumors. On the other hand, clinical "off-tumor/on-target" toxicities are still a major potential risk and can lead to severe adverse events. Incorporation of safety switches in rTCR-T cells can guarantee additional safety. Recent clinical trials provide encouraging data and emphasize the relevance of gene therapy and gene editing tools for potential treatment of solid tumors.

摘要

基因工程技术的最新进展极大地改善了癌症患者的治疗选择。有效的嵌合抗原受体T(CAR-T)细胞和重组T细胞受体工程化T(rTCR-T)细胞已进入临床用于治疗血液系统恶性肿瘤,取得了令人鼓舞的结果。然而,为了将这些策略应用于实体瘤的治疗,还需要进一步微调以提高其功能和安全性。免疫抑制微环境、周围基质和肿瘤异质性常常导致T细胞反应性差、功能受损以及浸润率降低,从而阻碍治疗效果。本综述的重点是rTCR-T细胞疗法的最新进展,以提高其功能和安全性,用于实体瘤的潜在治疗,并概述正在进行的临床试验。除了选择合适的肿瘤相关抗原外,将优化的重组TCR转基因有效递送至T细胞,结合基因编辑技术消除内源性TCR表达并破坏特定抑制途径,可以改善过继转移的T细胞。用特定的细胞因子和/或趋化因子及其受体武装rTCR-T细胞,或靶向肿瘤基质,可以提高免疫细胞在实体瘤内的浸润率。另一方面,临床“脱瘤/靶向”毒性仍然是一个主要潜在风险,可能导致严重不良事件。在rTCR-T细胞中加入安全开关可以确保额外的安全性。最近的临床试验提供了令人鼓舞的数据,并强调了基因治疗和基因编辑工具在实体瘤潜在治疗中的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdd0/7761868/5624eb650c85/vaccines-08-00733-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdd0/7761868/b7dc2d3294a7/vaccines-08-00733-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdd0/7761868/f166956bc2de/vaccines-08-00733-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdd0/7761868/5624eb650c85/vaccines-08-00733-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdd0/7761868/b7dc2d3294a7/vaccines-08-00733-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdd0/7761868/f166956bc2de/vaccines-08-00733-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdd0/7761868/5624eb650c85/vaccines-08-00733-g003.jpg

相似文献

[1]
Gene Augmentation and Editing to Improve TCR Engineered T Cell Therapy against Solid Tumors.

Vaccines (Basel). 2020-12-3

[2]
Treating solid tumors with TCR-based chimeric antigen receptor targeting extra domain B-containing fibronectin.

J Immunother Cancer. 2023-8

[3]
Chimeric antigen receptor T cells in solid tumors: a war against the tumor microenvironment.

Sci China Life Sci. 2019-12-23

[4]
Paving the Way to Solid Tumors: Challenges and Strategies for Adoptively Transferred Transgenic T Cells in the Tumor Microenvironment.

Cancers (Basel). 2022-8-29

[5]
CAR-T cell and Personalized Medicine.

Adv Exp Med Biol. 2019

[6]
Advancing CAR T-Cell Therapy for Solid Tumors: Lessons Learned from Lymphoma Treatment.

Cancers (Basel). 2020-1-3

[7]
Cancer immunotherapy with lymphocytes genetically engineered with T cell receptors for solid cancers.

Immunol Lett. 2019-10-6

[8]
Migratory Engineering of T Cells for Cancer Therapy.

Vaccines (Basel). 2022-10-31

[9]
Prospects for personalized combination immunotherapy for solid tumors based on adoptive cell therapies and immune checkpoint blockade therapies.

Nihon Rinsho Meneki Gakkai Kaishi. 2017

[10]
Increasing the safety and efficacy of chimeric antigen receptor T cell therapy.

Protein Cell. 2017-8

引用本文的文献

[1]
Targeting cancer with precision: strategical insights into TCR-engineered T cell therapies.

Theranostics. 2025-1-1

[2]
Multiple myeloma: signaling pathways and targeted therapy.

Mol Biomed. 2024-7-4

[3]
CD3ζ ITAMs enable ligand discrimination and antagonism by inhibiting TCR signaling in response to low-affinity peptides.

Nat Immunol. 2023-12

[4]
Report on Webinar Series Cell and Gene Therapy: From Concept to Clinical Use.

Pharmaceutics. 2022-1-11

[5]
Associação Brasileira de Hematologia, Hematologia, Hemoterapia e Terapia Celular Consensus on genetically modified cells. Review article: Cell therapy in solid tumors.

Hematol Transfus Cell Ther. 2021-11

[6]
Hijacked Immune Cells in the Tumor Microenvironment: Molecular Mechanisms of Immunosuppression and Cues to Improve T Cell-Based Immunotherapy of Solid Tumors.

Int J Mol Sci. 2021-5-27

本文引用的文献

[1]
PET Reporter Gene Imaging and Ganciclovir-Mediated Ablation of Chimeric Antigen Receptor T Cells in Solid Tumors.

Cancer Res. 2020-11-1

[2]
Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing.

Cells. 2020-7-2

[3]
Orthotopic T-Cell Receptor Replacement-An "Enabler" for TCR-Based Therapies.

Cells. 2020-6-1

[4]
Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer.

Nat Med. 2020-4-27

[5]
CAR T Cells Redirected to CD44v6 Control Tumor Growth in Lung and Ovary Adenocarcinoma Bearing Mice.

Front Immunol. 2020

[6]
CRISPR-engineered T cells in patients with refractory cancer.

Science. 2020-2-6

[7]
Combining microenvironment normalization strategies to improve cancer immunotherapy.

Proc Natl Acad Sci U S A. 2020-2-3

[8]
Enhanced efficacy and limited systemic cytokine exposure with membrane-anchored interleukin-12 T-cell therapy in murine tumor models.

J Immunother Cancer. 2020-1

[9]
Advances in detecting and reducing off-target effects generated by CRISPR-mediated genome editing.

J Genet Genomics. 2019-11-22

[10]
Targeting cancers through TCR-peptide/MHC interactions.

J Hematol Oncol. 2019-12-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索