Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, NCI, Frederick, Maryland.
Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
Mol Cancer Res. 2021 Apr;19(4):543-548. doi: 10.1158/1541-7786.MCR-20-0818. Epub 2020 Dec 7.
PI3K and PTEN are the second and third most highly mutated proteins in cancer following only p53. Their actions oppose each other. PI3K phosphorylates signaling lipid PIP to PIP PTEN dephosphorylates it back. Driver mutations in both proteins accrue PIP PIP recruits AKT and PDK1 to the membrane, promoting cell-cycle progression. Here we review phosphorylation events and mutations in autoinhibition in PI3K and PTEN from the structural standpoint. Our purpose is to clarify how they control the autoinhibited states. In autoinhibition, a segment or a subunit of the protein occludes its functional site. Protein-protein interfaces are often only marginally stable, making them sensitive to changes in conditions in living cells. Phosphorylation can stabilize or destabilize the interfaces. Driver mutations commonly destabilize them. In analogy to "passenger mutations," we coin "passenger phosphorylation" to emphasize that the presence of a phosphorylation recognition sequence logo does not necessarily imply function. Rather, it may simply reflect a statistical occurrence. In both PI3K and PTEN, autoinhibiting phosphorylation events are observed in the occluding "piece." In PI3Kα, the "piece" is the p85α subunit. In PTEN, it is the C-terminal segment. In both enzymes the stabilized interface covers the domain that attaches to the membrane. Driver mutations that trigger rotation of the occluding piece or its deletion prompt activation. To date, both enzymes lack specific, potent drugs. We discuss the implications of detailed structural and mechanistic insight into oncogenic activation and how it can advance allosteric precision oncology.
PI3K 和 PTEN 是仅次于 p53 的第二和第三大在癌症中突变频率最高的蛋白。它们的作用相互拮抗。PI3K 将信号脂质 PIP 磷酸化,PTEN 将其去磷酸化。这两种蛋白的驱动突变都会导致 PIP 积累,PIP 招募 AKT 和 PDK1 到细胞膜上,促进细胞周期进程。本文从结构角度综述了 PI3K 和 PTEN 中的自动抑制磷酸化事件和突变。我们的目的是阐明它们如何控制自动抑制状态。在自动抑制中,蛋白质的一个片段或亚基会掩盖其功能部位。蛋白质-蛋白质界面通常只是略微稳定,因此它们对活细胞中条件变化很敏感。磷酸化可以稳定或破坏界面。驱动突变通常会使其不稳定。类比于“乘客突变”,我们创造了“乘客磷酸化”一词,以强调磷酸化识别序列标记的存在不一定意味着功能。相反,它可能只是反映了统计上的发生。在 PI3K 和 PTEN 中,自动抑制的磷酸化事件发生在封闭的“片段”中。在 PI3Kα 中,“片段”是 p85α 亚基。在 PTEN 中,它是 C 末端片段。在这两种酶中,稳定的界面覆盖了与膜结合的结构域。触发封闭片段旋转或其缺失的驱动突变会引发激活。到目前为止,这两种酶都缺乏特异性、有效的药物。我们讨论了对致癌激活的详细结构和机制见解的影响,以及它如何推进变构精准肿瘤学。