Department of Physics and Technology, UiT The Arctic University of Norway, 9019, Tromsø, Norway.
Cell Biology & Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.
Commun Biol. 2020 Dec 7;3(1):739. doi: 10.1038/s42003-020-01473-4.
Correlative light and electron microscopy (CLEM) unifies the versatility of light microscopy (LM) with the high resolution of electron microscopy (EM), allowing one to zoom into the complex organization of cells. Here, we introduce photonic chip assisted CLEM, enabling multi-modal total internal reflection fluorescence (TIRF) microscopy over large field of view and high precision localization of the target area of interest within EM. The photonic chips are used as a substrate to hold, to illuminate and to provide landmarking of the sample through specially designed grid-like numbering systems. Using this approach, we demonstrate its applicability for tracking the area of interest, imaging the three-dimensional (3D) structural organization of nano-sized morphological features on liver sinusoidal endothelial cells such as fenestrations (trans-cytoplasmic nanopores), and correlating specific endo-lysosomal compartments with its cargo protein upon endocytosis.
相关光镜和电子显微镜(CLEM)将光镜(LM)的多功能性与电子显微镜(EM)的高分辨率结合在一起,使人们能够深入研究细胞的复杂结构。在这里,我们介绍了基于光子芯片的 CLEM,它能够在大视场中进行多模态全内反射荧光(TIRF)显微镜,并在 EM 中对目标感兴趣区域进行高精度定位。光子芯片可用作基底,通过专门设计的网格编号系统来保持、照明和标记样品。使用这种方法,我们证明了它在跟踪感兴趣区域、对肝窦内皮细胞上纳米级形态特征的三维(3D)结构组织进行成像(例如窗孔,即跨细胞质纳米孔),以及在细胞内吞作用时将特定的内体-溶酶体隔室与其货物蛋白相关联方面的适用性。