Photonics Research Group, INTEC Department, Ghent University-imec, 9052, Ghent, Belgium.
Center for Nano- and Biophotonics, Ghent University, Ghent, Belgium.
Nat Commun. 2022 Jul 27;13(1):4360. doi: 10.1038/s41467-022-31989-8.
Ultra-violet (UV) light has still a limited scope in optical microscopy despite its potential advantages over visible light in terms of optical resolution and of interaction with a wide variety of biological molecules. The main challenge is to control in a robust, compact and cost-effective way UV light beams at the level of a single optical spatial mode and concomitantly to minimize the light propagation loss. To tackle this challenge, we present here photonic integrated circuits made of aluminum oxide thin layers that are compatible with both UV light and high-volume manufacturing. These photonic circuits designed at a wavelength of 360 nm enable super-resolved structured illumination microscopy with conventional wide-field microscopes and without modifying the usual protocol for handling the object to be imaged. As a biological application, we show that our UV photonic chips enable to image the autofluorescence of yeast cells and reveal features unresolved with standard wide-field microscopy.
尽管与可见光相比,紫外(UV)光在光学分辨率和与多种生物分子的相互作用方面具有优势,但在光学显微镜中,它的应用仍然有限。主要的挑战是以稳健、紧凑且具有成本效益的方式控制单个光学空间模式的 UV 光束,并同时最小化光传播损耗。为了应对这一挑战,我们在这里提出了由氧化铝薄膜制成的光子集成电路,这些电路与 UV 光和大批量制造兼容。这些在 360nm 波长下设计的光子电路可与传统的宽场显微镜结合使用,实现超分辨率结构光照明显微镜,而无需修改用于处理待成像物体的常规协议。作为生物学应用,我们表明我们的 UV 光子芯片可用于对酵母细胞的自发荧光进行成像,并揭示用标准宽场显微镜无法分辨的特征。