Suppr超能文献

预测 COVID-19 重症患者死亡结局的列线图:一项多中心研究。

Nomogram for prediction of fatal outcome in patients with severe COVID-19: a multicenter study.

机构信息

The Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China.

The Guanggu Branch of the Women and Children's Hospital of Hubei Province, Wuhan, 430070, China.

出版信息

Mil Med Res. 2021 Mar 17;8(1):21. doi: 10.1186/s40779-021-00315-6.

Abstract

BACKGROUND

To develop an effective model of predicting fatal outcomes in the severe coronavirus disease 2019 (COVID-19) patients.

METHODS

Between February 20, 2020 and April 4, 2020, consecutive confirmed 2541 COVID-19 patients from three designated hospitals were enrolled in this study. All patients received chest computed tomography (CT) and serological examinations at admission. Laboratory tests included routine blood tests, liver function, renal function, coagulation profile, C-reactive protein (CRP), procalcitonin (PCT), interleukin-6 (IL-6), and arterial blood gas. The SaO was measured using pulse oxygen saturation in room air at resting status. Independent high-risk factors associated with death were analyzed using Cox proportional hazard model. A prognostic nomogram was constructed to predict the survival of severe COVID-19 patients.

RESULTS

There were 124 severe patients in the training cohort, and there were 71 and 76 severe patients in the two independent validation cohorts, respectively. Multivariate Cox analysis indicated that age ≥ 70 years (HR = 1.184, 95% CI 1.061-1.321), panting (breathing rate ≥ 30/min) (HR = 3.300, 95% CI 2.509-6.286), lymphocyte count < 1.0 × 10/L (HR = 2.283, 95% CI 1.779-3.267), and interleukin-6 (IL-6) >  10 pg/ml (HR = 3.029, 95% CI 1.567-7.116) were independent high-risk factors associated with fatal outcome. We developed the nomogram for identifying survival of severe COVID-19 patients in the training cohort (AUC = 0.900, 95% CI 0.841-0.960, sensitivity 95.5%, specificity 77.5%); in validation cohort 1 (AUC = 0.811, 95% CI 0.763-0.961, sensitivity 77.3%, specificity 73.5%); in validation cohort 2 (AUC = 0.862, 95% CI 0.698-0.924, sensitivity 92.9%, specificity 64.5%). The calibration curve for probability of death indicated a good consistence between prediction by the nomogram and the actual observation. The prognosis of severe COVID-19 patients with high levels of IL-6 receiving tocilizumab were better than that of those patients without tocilizumab both in the training and validation cohorts, but without difference (P = 0.105 for training cohort, P = 0.133 for validation cohort 1, and P = 0.210 for validation cohort 2).

CONCLUSIONS

This nomogram could help clinicians to identify severe patients who have high risk of death, and to develop more appropriate treatment strategies to reduce the mortality of severe patients. Tocilizumab may improve the prognosis of severe COVID-19 patients with high levels of IL-6.

摘要

背景

开发一种有效的模型来预测严重的 2019 年冠状病毒病(COVID-19)患者的致命结局。

方法

在 2020 年 2 月 20 日至 2020 年 4 月 4 日期间,从三家指定医院连续纳入 2541 名确诊的 COVID-19 患者。所有患者入院时均接受胸部计算机断层扫描(CT)和血清学检查。实验室检查包括常规血液检查、肝功能、肾功能、凝血谱、C 反应蛋白(CRP)、降钙素原(PCT)、白细胞介素-6(IL-6)和动脉血气分析。使用脉搏血氧饱和度仪在静息状态下测量 SaO。使用 Cox 比例风险模型分析与死亡相关的独立高危因素。构建预测严重 COVID-19 患者生存的预后列线图。

结果

在训练队列中有 124 例严重患者,在两个独立验证队列中分别有 71 例和 76 例严重患者。多变量 Cox 分析表明,年龄≥70 岁(HR=1.184,95%CI 1.061-1.321)、气喘(呼吸频率≥30/min)(HR=3.300,95%CI 2.509-6.286)、淋巴细胞计数<1.0×10/L(HR=2.283,95%CI 1.779-3.267)和白细胞介素-6(IL-6)>10pg/ml(HR=3.029,95%CI 1.567-7.116)是与致命结局相关的独立高危因素。我们开发了用于识别严重 COVID-19 患者生存情况的列线图,在训练队列中的 AUC 值为 0.900(95%CI 0.841-0.960,敏感性 95.5%,特异性 77.5%);在验证队列 1 中的 AUC 值为 0.811(95%CI 0.763-0.961,敏感性 77.3%,特异性 73.5%);在验证队列 2 中的 AUC 值为 0.862(95%CI 0.698-0.924,敏感性 92.9%,特异性 64.5%)。死亡概率的校准曲线表明,列线图预测与实际观察之间具有良好的一致性。在训练和验证队列中,IL-6 水平较高的严重 COVID-19 患者接受托珠单抗治疗后的预后均优于未接受托珠单抗治疗的患者,但无差异(在训练队列中 P=0.105,在验证队列 1 中 P=0.133,在验证队列 2 中 P=0.210)。

结论

该列线图可帮助临床医生识别有高死亡风险的严重患者,并制定更合适的治疗策略,以降低严重患者的死亡率。托珠单抗可能改善 IL-6 水平较高的严重 COVID-19 患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b43/7968311/4da3e93fafe8/40779_2021_315_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验