Chemical Imaging and Speciation, CENBG, Univ. Bordeaux, Gradignan, France.
CNRS, IN2P3, CENBG, UMR 5797, Gradignan, France.
Elife. 2020 Dec 8;9:e62334. doi: 10.7554/eLife.62334.
Zinc and copper are involved in neuronal differentiation and synaptic plasticity but the molecular mechanisms behind these processes are still elusive due in part to the difficulty of imaging trace metals together with proteins at the synaptic level. We correlate stimulated-emission-depletion microscopy of proteins and synchrotron X-ray fluorescence imaging of trace metals, both performed with 40 nm spatial resolution, on primary rat hippocampal neurons. We reveal the co-localization at the nanoscale of zinc and tubulin in dendrites with a molecular ratio of about one zinc atom per tubulin-αβ dimer. We observe the co-segregation of copper and F-actin within the nano-architecture of dendritic protrusions. In addition, zinc chelation causes a decrease in the expression of cytoskeleton proteins in dendrites and spines. Overall, these results indicate new functions for zinc and copper in the modulation of the cytoskeleton morphology in dendrites, a mechanism associated to neuronal plasticity and memory formation.
锌和铜参与神经元分化和突触可塑性,但由于在突触水平上同时对痕量金属和蛋白质进行成像的难度,这些过程背后的分子机制仍难以捉摸。我们将蛋白质的受激发射损耗显微镜与痕量金属的同步加速器 X 射线荧光成像进行关联,这两种技术的空间分辨率均为 40nm,对原代大鼠海马神经元进行了研究。我们揭示了锌和微管蛋白在树突中的纳米级共定位,其分子比约为每个微管-αβ二聚体一个锌原子。我们观察到铜和 F-肌动蛋白在树突状突起的纳米结构内的共分离。此外,锌螯合作用会导致树突和棘突中细胞骨架蛋白的表达减少。总的来说,这些结果表明锌和铜在调节树突状细胞骨架形态方面具有新的功能,这一机制与神经元可塑性和记忆形成有关。