Ahammad Tanbir, Drew Daniel L, Sahu Indra D, Khan Rasal H, Butcher Brandon J, Serafin Rachel A, Galende Alberto P, McCarrick Robert M, Lorigan Gary A
Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States.
Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States.
J Phys Chem B. 2020 Dec 17;124(50):11396-11405. doi: 10.1021/acs.jpcb.0c09081. Epub 2020 Dec 8.
Bacteriophages have evolved with an efficient host cell lysis mechanism to terminate the infection cycle and release the new progeny virions at the optimum time, allowing adaptation with the changing host and environment. Among the lytic proteins, holin controls the first and rate-limiting step of host cell lysis by permeabilizing the inner membrane at an allele-specific time known as "holin triggering". Pinholin S is a prototype holin of phage Φ21 which makes many nanoscale holes and destroys the proton motive force, which in turn activates the signal anchor release (SAR) endolysin system to degrade the peptidoglycan layer of the host cell and destruction of the outer membrane by the spanin complex. Like many others, phage Φ21 has two holin proteins: active pinholin and antipinholin. The antipinholin form differs only by three extra amino acids at the N-terminus; however, it has a different structural topology and conformation with respect to the membrane. Predefined combinations of active pinholin and antipinholin fine-tune the lysis timing through structural dynamics and conformational changes. Previously, the dynamics and topology of active pinholin and antipinholin were investigated (Ahammad et al. ) using continuous wave electron paramagnetic resonance (CW-EPR) spectroscopy. However, detailed structural studies and direct comparison of these two forms of pinholin S are absent in the literature. In this study, the structural topology and conformations of active pinholin (S68) and inactive antipinholin (S68) in DMPC (1,2-dimyristoyl--glycero-3-phosphocholine) proteoliposomes were investigated using the four-pulse double electron-electron resonance (DEER) EPR spectroscopic technique to measure distances between transmembrane domains 1 and 2 (TMD1 and TMD2). Five sets of interlabel distances were measured via DEER spectroscopy for both the active and inactive forms of pinholin S. Structural models of the active pinholin and inactive antipinholin forms in DMPC proteoliposomes were obtained using the experimental DEER distances coupled with the simulated annealing software package Xplor-NIH. TMD2 of S68 remains in the lipid bilayer, and TMD1 is partially externalized from the bilayer with some residues located on the surface. However, both TMDs remain incorporated in the lipid bilayer for the inactive S68 form. This study demonstrates, for the first time, clear structural topology and conformational differences between the two forms of pinholin S. This work will pave the way for further studies of other holin systems using the DEER spectroscopic technique and will give structural insight into these biological clocks in molecular detail.
噬菌体已经进化出一种高效的宿主细胞裂解机制,以终止感染周期并在最佳时间释放新的子代病毒粒子,从而适应不断变化的宿主和环境。在裂解蛋白中,孔蛋白通过在称为“孔蛋白触发”的等位基因特异性时间使内膜通透化,来控制宿主细胞裂解的第一步和限速步骤。微小孔蛋白S是噬菌体Φ21的一种典型孔蛋白,它会形成许多纳米级的孔并破坏质子动力势,进而激活信号锚定释放(SAR)内溶素系统,以降解宿主细胞的肽聚糖层,并通过跨膜蛋白复合物破坏外膜。与许多其他噬菌体一样,噬菌体Φ21有两种孔蛋白:活性微小孔蛋白和抗微小孔蛋白。抗微小孔蛋白形式仅在N端多了三个氨基酸;然而,它在膜上具有不同的结构拓扑和构象。活性微小孔蛋白和抗微小孔蛋白的预定义组合通过结构动力学和构象变化来微调裂解时间。此前,使用连续波电子顺磁共振(CW-EPR)光谱研究了活性微小孔蛋白和抗微小孔蛋白的动力学和拓扑结构(阿哈马德等人)。然而,文献中缺乏对这两种形式的微小孔蛋白S的详细结构研究和直接比较。在本研究中,使用四脉冲双电子-电子共振(DEER)EPR光谱技术,研究了DMPC(1,2-二肉豆蔻酰-sn-甘油-3-磷酸胆碱)蛋白脂质体中活性微小孔蛋白(S68)和非活性抗微小孔蛋白(S68)的结构拓扑和构象,以测量跨膜结构域1和2(TMD1和TMD2)之间的距离。通过DEER光谱测量了微小孔蛋白S的活性和非活性形式的五组标记间距离。使用实验性DEER距离结合模拟退火软件包Xplor-NIH,获得了DMPC蛋白脂质体中活性微小孔蛋白和非活性抗微小孔蛋白形式的结构模型。S68的TMD2保留在脂质双层中,而TMD1部分从双层中向外暴露,一些残基位于表面。然而,对于非活性S68形式,两个TMD都保留在脂质双层中。本研究首次证明了两种形式的微小孔蛋白S之间存在明显的结构拓扑和构象差异。这项工作将为使用DEER光谱技术进一步研究其他孔蛋白系统铺平道路,并将在分子细节上为这些生物钟提供结构上的见解。