Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA.
Biochim Biophys Acta Biomembr. 2023 Jun;1865(5):184154. doi: 10.1016/j.bbamem.2023.184154. Epub 2023 Apr 5.
The lytic cycle of bacteriophage φ21 for the infected E. coli is initiated by pinholin S, which determines the timing of host cell lysis through the function of pinholin (S68) and antipinholin (S71). The activity of pinholin or antipinholin directly depends on the function of two transmembrane domains (TMDs) within the membrane. For active pinholin, TMD1 externalizes and lies on the surface while TMD2 remains incorporated inside the membrane forming the lining of the small pinhole. In this study, spin labeled pinholin TMDs were incorporated separately into mechanically aligned POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine) lipid bilayers and investigated with electron paramagnetic resonance (EPR) spectroscopy to determine the topology of both TMD1 and TMD2 with respect to the lipid bilayer; the TOAC (2,2,6,6-tetramethyl-N-oxyl-4-amino-4-carboxylic acid) spin label was used here because it attaches to the backbone of a peptide and is very rigid. TMD2 was found to be nearly colinear with the bilayer normal (n) with a helical tilt angle of 16 ± 4° while TMD1 lies on or near the surface with a helical tilt angle of 84 ± 4°. The order parameters (~0.6 for both TMDs) obtained from our alignment study were reasonable, which indicates the samples incorporated inside the membrane were well aligned with respect to the magnetic field (B). The data obtained from this study supports previous findings on pinholin: TMD1 partially externalizes from the lipid bilayer and interacts with the membrane surface, whereas TMD2 remains buried in the lipid bilayer in the active conformation of pinholin S68. In this study, the helical tilt angle of TMD1 was measured for the first time. For TMD2 our experimental data corroborates the findings of the previously reported helical tilt angle by the Ulrich group.
噬菌体 φ21 对感染的大肠杆菌的裂解周期是由穿孔素 S 启动的,它通过穿孔素 (S68) 和抗穿孔素 (S71) 的功能来确定宿主细胞裂解的时间。穿孔素或抗穿孔素的活性直接依赖于膜内两个跨膜结构域 (TMD) 的功能。对于活性的穿孔素,TMD1 外部化并位于表面,而 TMD2 则保持嵌入在膜内,形成小孔的衬里。在这项研究中,分别将自旋标记的穿孔素 TMD 掺入机械排列的 POPC(1-棕榈酰-2-油酰基-甘油-3-磷酸胆碱)脂质双层中,并通过电子顺磁共振 (EPR) 光谱研究来确定 TMD1 和 TMD2 相对于脂质双层的拓扑结构;这里使用了 TOAC(2,2,6,6-四甲基-N-氧代-4-氨基-4-羧酸)自旋标记物,因为它附着在肽的骨架上,非常刚性。TMD2 与双层法向 (n) 几乎共线,螺旋倾斜角为 16±4°,而 TMD1 位于或靠近表面,螺旋倾斜角为 84±4°。从我们的排列研究中获得的顺序参数 (~0.6 对于两个 TMD 都)是合理的,这表明在膜内掺入的样品相对于磁场 (B) 排列良好。从这项研究中获得的数据支持了先前关于穿孔素的发现:TMD1 部分从脂质双层中向外延伸并与膜表面相互作用,而 TMD2 在穿孔素 S68 的活性构象中仍然埋在脂质双层中。在这项研究中,TMD1 的螺旋倾斜角是第一次被测量的。对于 TMD2,我们的实验数据证实了 Ulrich 小组先前报道的螺旋倾斜角的发现。