Suppr超能文献

基于自由呼吸质子 MRI 和深度卷积神经网络生成的肺部通气图。

Pulmonary Ventilation Maps Generated with Free-breathing Proton MRI and a Deep Convolutional Neural Network.

机构信息

From the Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, Calif (D.P.I.C., L.X.); Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Canada (F.G.); and Robarts Research Institute, Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7 (G.P.).

出版信息

Radiology. 2021 Feb;298(2):427-438. doi: 10.1148/radiol.2020202861. Epub 2020 Dec 8.

Abstract

Background Hyperpolarized noble gas MRI helps measure lung ventilation, but clinical translation remains limited. Free-breathing proton MRI may help quantify lung function using existing MRI systems without contrast material and may assist in providing information about ventilation not visible to the eye or easily extracted with segmentation methods. Purpose To explore the use of deep convolutional neural networks (DCNNs) to generate synthetic MRI ventilation scans from free-breathing MRI (deep learning [DL] ventilation MRI)-derived specific ventilation maps as a surrogate of noble gas MRI and to validate this approach across a wide range of lung diseases. Materials and Methods In this secondary analysis of prospective trials, 114 paired noble gas MRI and two-dimensional free-breathing MRI scans were obtained in healthy volunteers with no history of chronic or acute respiratory disease and in study participants with a range of different obstructive lung diseases, including asthma, bronchiectasis, chronic obstructive pulmonary disease, and non-small-cell lung cancer between September 2013 and April 2018 (ClinicalTrials.gov identifiers: NCT03169673, NCT02351141, NCT02263794, NCT02282202, NCT02279329, and NCT02002052). A U-Net-based DCNN model was trained to map free-breathing proton MRI to hyperpolarized helium 3 (He) MRI ventilation and validated using a sixfold validation. During training, the DCNN ventilation maps were compared with noble gas MRI scans using the Pearson correlation coefficient () and mean absolute error. DCNN ventilation images were segmented for ventilation and ventilation defects and were compared with noble gas MRI scans using the Dice similarity coefficient (DSC). Relationships were evaluated with the Spearman correlation coefficient (). Results One hundred fourteen study participants (mean age, 56 years ± 15 [standard deviation]; 66 women) were evaluated. As compared with He MRI, DCNN model ventilation maps had a mean value of 0.87 ± 0.08. The mean DSC for DL ventilation MRI and He MRI ventilation was 0.91 ± 0.07. The ventilation defect percentage for DL ventilation MRI was highly correlated with He MRI ventilation defect percentage ( = 0.83, < .001, mean bias = -2.0% ± 5). Both DL ventilation MRI ( = -0.51, < .001) and He MRI ( = -0.61, < .001) ventilation defect percentage were correlated with the forced expiratory volume in 1 second. The DCNN model required approximately 2 hours for training and approximately 1 second to generate a ventilation map. Conclusion In participants with diverse pulmonary pathologic findings, deep convolutional neural networks generated ventilation maps from free-breathing proton MRI trained with a hyperpolarized noble-gas MRI ventilation map data set. The maps showed correlation with noble gas MRI ventilation and pulmonary function measurements. © RSNA, 2020 See also the editorial by Vogel-Claussen in this issue.

摘要

背景 超极化惰性气体 MRI 有助于测量肺通气,但临床转化仍然有限。自由呼吸质子 MRI 可能有助于使用现有的 MRI 系统定量测量肺功能,而无需造影剂,并且可能有助于提供肉眼看不见或通过分割方法难以提取的通气信息。

目的 探索使用深度卷积神经网络(DCNN)从自由呼吸 MRI(深度学习[DL]通气 MRI)衍生的特定通气图生成合成 MRI 通气扫描,作为惰性气体 MRI 的替代物,并在广泛的肺部疾病中验证这种方法。

材料与方法 本研究为前瞻性试验的二次分析,纳入 2013 年 9 月至 2018 年 4 月期间无慢性或急性呼吸道疾病的健康志愿者和多种不同阻塞性肺疾病(哮喘、支气管扩张、慢性阻塞性肺疾病和非小细胞肺癌)患者,共纳入 114 对惰性气体 MRI 和二维自由呼吸 MRI 扫描(ClinicalTrials.gov 标识符:NCT03169673、NCT02351141、NCT02263794、NCT02282202、NCT02279329 和 NCT02002052)。采用基于 U-Net 的 DCNN 模型将自由呼吸质子 MRI 映射到超极化氦 3(He)MRI 通气,并使用六重验证进行验证。在训练过程中,使用 Pearson 相关系数()和平均绝对误差比较 DCNN 通气图与惰性气体 MRI 扫描。使用 Dice 相似系数(DSC)比较 DCNN 通气图像的通气和通气缺陷,并与惰性气体 MRI 扫描进行比较。使用 Spearman 相关系数()评估相关性。

结果 共纳入 114 例研究参与者(平均年龄 56 岁±15[标准差];66 名女性)进行评估。与 He MRI 相比,DCNN 模型通气图的平均 值为 0.87±0.08。DL 通气 MRI 和 He MRI 通气的平均 DSC 为 0.91±0.07。DL 通气 MRI 的通气缺陷百分比与 He MRI 通气缺陷百分比高度相关(=0.83, <.001,平均偏差=-2.0%±5)。DL 通气 MRI(= -0.51, <.001)和 He MRI(= -0.61, <.001)通气缺陷百分比均与 1 秒用力呼气量相关。DCNN 模型训练需要大约 2 小时,生成通气图大约需要 1 秒。

结论 在具有不同肺部病理发现的参与者中,深度卷积神经网络从自由呼吸质子 MRI 生成了通气图,该质子 MRI 是使用超极化惰性气体 MRI 通气图数据集进行训练的。这些图谱与惰性气体 MRI 通气和肺功能测量值具有相关性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验