Pomeranz Krummel Daniel A, Nasti Tahseen H, Kaluzova Milota, Kallay Laura, Bhattacharya Debanjan, Melms Johannes C, Izar Benjamin, Xu Maxwell, Burnham Andre, Ahmed Taukir, Li Guanguan, Lawson David, Kowalski Jeanne, Cao Yichun, Switchenko Jeffrey M, Ionascu Dan, Cook James M, Medvedovic Mario, Jenkins Andrew, Khan Mohammad K, Sengupta Soma
Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio.
Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia.
Int J Radiat Oncol Biol Phys. 2021 Mar 15;109(4):1040-1053. doi: 10.1016/j.ijrobp.2020.10.025. Epub 2020 Oct 24.
Most patients with metastatic melanoma show variable responses to radiation therapy and do not benefit from immune checkpoint inhibitors. Improved strategies for combination therapy that leverage potential benefits from radiation therapy and immune checkpoint inhibitors are critical.
We analyzed metastatic melanoma tumors in the TCGA cohort for expression of genes coding for subunits of type A γ-aminobutyric acid (GABA) receptor (GABAR), a chloride ion channel and major inhibitory neurotransmitter receptor. Electrophysiology was used to determine whether melanoma cells possess intrinsic GABAR activity. Melanoma cell viability studies were conducted to test whether enhancing GABAR mediated chloride transport using benzodiazepine-impaired viability. A syngeneic melanoma mouse model was used to assay the effect of benzodiazepine on tumor volume and its ability to potentiate radiation therapy or immunotherapy. Treated tumors were analyzed for changes in gene expression by RNA sequencing and presence of tumor-infiltrating lymphocytes by flow cytometry.
Genes coding for subunits of GABARs express functional GABARs in melanoma cells. By enhancing GABAR-mediated anion transport, benzodiazepines depolarize melanoma cells and impair their viability. In vivo, benzodiazepine alone reduces tumor growth and potentiates radiation therapy and α-PD-L1 antitumor activity. The combination of benzodiazepine, radiation therapy, and α-PD-L1 results in near complete regression of treated tumors and a potent abscopal effect, mediated by increased infiltration of polyfunctional CD8 T cells. Treated tumors show expression of cytokine-cytokine receptor interactions and overrepresentation of p53 signaling.
This study identifies an antitumor strategy combining radiation and/or an immune checkpoint inhibitor with modulation of GABARs in melanoma using benzodiazepine.
大多数转移性黑色素瘤患者对放射治疗反应不一,且无法从免疫检查点抑制剂中获益。改进联合治疗策略,利用放射治疗和免疫检查点抑制剂的潜在益处至关重要。
我们分析了TCGA队列中的转移性黑色素瘤肿瘤,以检测编码A型γ-氨基丁酸(GABA)受体(GABAR)亚基的基因表达,GABAR是一种氯离子通道和主要抑制性神经递质受体。采用电生理学方法确定黑色素瘤细胞是否具有内在的GABAR活性。进行黑色素瘤细胞活力研究,以测试使用苯二氮䓬增强GABAR介导的氯离子转运是否会损害细胞活力。使用同基因黑色素瘤小鼠模型分析苯二氮䓬对肿瘤体积的影响及其增强放射治疗或免疫治疗的能力。通过RNA测序分析治疗后肿瘤的基因表达变化,并通过流式细胞术分析肿瘤浸润淋巴细胞的存在情况。
编码GABAR亚基的基因在黑色素瘤细胞中表达功能性GABAR。通过增强GABAR介导的阴离子转运,苯二氮䓬使黑色素瘤细胞去极化并损害其活力。在体内,单独使用苯二氮䓬可减少肿瘤生长,并增强放射治疗和α-PD-L1的抗肿瘤活性。苯二氮䓬、放射治疗和α-PD-L1联合使用可使治疗后的肿瘤几乎完全消退,并产生强大的远隔效应,这是由多功能CD8 T细胞浸润增加介导的。治疗后的肿瘤显示细胞因子-细胞因子受体相互作用的表达以及p53信号通路的过度表达。
本研究确定了一种抗肿瘤策略,即使用苯二氮䓬调节黑色素瘤中的GABAR,将放射治疗和/或免疫检查点抑制剂联合应用。