LRI, Université Paris-Saclay, CNRS, Inria, 91400, Orsay, France.
LTCI, Télécom Paris, Institut Polytechnique de Paris, 91120, Palaiseau, France.
Biol Cybern. 2020 Dec;114(6):621-641. doi: 10.1007/s00422-020-00853-7. Epub 2020 Dec 8.
Trajectories in human aimed movements are inherently variable. Using the concept of positional variance profiles, such trajectories are shown to be decomposable into two phases: In a first phase, the variance of the limb position over many trajectories increases rapidly; in a second phase, it then decreases steadily. A new theoretical model, where the aiming task is seen as a Shannon-like communication problem, is developed to describe the second phase: Information is transmitted from a "source" (determined by the position at the end of the first phase) to a "destination" (the movement's end-point) over a "channel" perturbed by Gaussian noise, with the presence of a noiseless feedback link. Information-theoretic considerations show that the positional variance decreases exponentially with a rate equal to the channel capacity C. Two existing datasets for simple pointing tasks are re-analyzed and observations on real data confirm our model. The first phase has constant duration, and C is found constant across instructions and task parameters, which thus characterizes the participant's performance. Our model provides a clear understanding of the speed-accuracy tradeoff in aimed movements: Since the participant's capacity is fixed, a higher prescribed accuracy necessarily requires a longer second phase resulting in an increased overall movement time. The well-known Fitts' law is also recovered using this approach.
人类指向运动的轨迹本质上是可变的。使用位置方差分布的概念,可以将这些轨迹分解为两个阶段:在第一阶段,许多轨迹中肢体位置的方差迅速增加;在第二阶段,它然后稳定地减少。开发了一种新的理论模型,将瞄准任务视为类似于香农的通信问题,以描述第二阶段:信息从“源”(由第一阶段末端的位置决定)传输到“目的地”(运动的终点),通过高斯噪声干扰的“通道”,并存在无噪声的反馈链路。信息论的考虑表明,位置方差以等于通道容量 C 的速率呈指数下降。对两个用于简单指向任务的现有数据集进行重新分析,对真实数据的观察结果证实了我们的模型。第一阶段具有恒定的持续时间,并且 C 在指令和任务参数之间保持恒定,这因此表征了参与者的性能。我们的模型提供了对指向运动中的速度-准确性权衡的清晰理解:由于参与者的容量是固定的,因此更高的规定准确性必然需要更长的第二阶段,从而导致整体运动时间增加。使用这种方法还可以恢复著名的菲茨定律。